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User Response Prediction

e

= Predict the probability of positive user response
= Feature x, including side-information and previous behaviors
= Label y
= Qutput Pr(y = 1|x)

Response Type Prediction Goal Abbreviati
on

Click Click-through Rate CTR

Conversion Conversion Rate CVR




Sequential Modeling for User Behavi%%Tﬁ

= Sequential user modeling
= Conduct a comprehensive user profiling with the historical user behaviors and
other side information and represent it in a unified framework.
= Usage
= User targeting in online advertising

= User behavior prediction

= Characteristics of user behaviors

= |ntrinsic and multi-facet user interests

= Dynamic user interests and tastes

= Multi-scale sequential dependency within behavior history
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Analysis of User Behaviors (Alibaba)
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Related Works
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= Aggregation-base methods: w/o considering sequential dependencies
= Matrix factorization (KDD’09)
= SVD and other variants (KDD’09, KDD’13)

= State-based methods: simple state and transition assumption

= Markov chain models (WWW’10, ICDM’16, RecSys’16)

= Deep learning methods: cannot handle long-term behavior sequences
= Recurrent neural network models (ICLR’16, CIKM’18)

= Convolutional neural network models (WSDM’18)



Lifelong Sequential Modeling
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= Definition of Lifelong Sequential Modeling (LSM)

= LSM is a process of continuous (online) user modeling with sequential pattern
mining upon the lifelong user behavior history.

= Characteristics
= supports lifelong memorization of user behavior patterns
= conducts a comprehensive user modeling of intrinsic and dynamic user interests

= continuous adaptation to the up-to-date user behaviors
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Figure 2: The LSM framework.
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HPMN Model PN

= Hierarchical Periodical Memory Network, HPMN
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Figure 3: The framework of HPMN model with four layers maintaining user memory in four (D = 4) memory slots. The update
period t/ of j-th layer follows an exponential sequence {2/’ }jD= , as an example. The red part means the incremental updating

mechanism; the dotted line means the periodic memorization and forgetting.




User Response Prediction e [
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= Real-time query only on the maintained user memory

= w/o inference over the whole user behavior sequence online
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Figure 4: The overall user response prediction.




R/W Operations P o

= The content in the j-th memory slot at step i
- {m{}?=1
= Memory query and attentional reading

= Given the query vector of the target item v

» Calculate the attention weight w/ = E(m/, v) for each j-th memory slot

= User representationr = Y’ w/ - m/ at step i
j

= Periodical and gate-based (soft) writing

(-1 ' . ;
i gf(mf ,mf_l) ifimodt# =0,
mJl._1 otherwise ,
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HPMN Model Training

= Offline model training

= Online memory maintaining

= Loss functions
= Cross entropy loss

= Memory covariance regularization
= To enlarge covariance between each pair of memory slots

= Help deal with multi-facet user interests

= Parameter regularization
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Experiment Setup

= Datasets

SN\FR

Table 2: The dataset statistics. T: length of the whole lifelong
sequence (maximal length in the dataset). s: length of recent

behavior sequence.

Dataset | Amazon | Taobao | XLong

User # 192,403 987,994 20,000
Item # 63,001 4,162,024 | 3,269,017
s 10 44 232
T 100 300 1,000
short » long

= Evaluation metrics
= AUC

= Log-loss

Sequence length

SO




Compared Models

1.

Aggregation-based methods

1.
2.

DNN: utilizes sum-pooling for user behaviors

SVD++: latent factor model

Short-term behavior modeling methods

1.
2.

3.
4.

GRU4Rec: recurrent neural network model
Caser: convolutional neural network model
DIEN: dual RNN model w/ attention mechanism

RUM: key-value memory network model

Long-term behavior modeling methods

1.
2.
3.

LSTM: long-short term memory model

SHAN: hierarchical attention-based model

HPMN: our model
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Experiment Results J—

Table 4: Performance Comparison. (* indicates p-value < 107 in the significance test. T and | indicates the performance over
lifelong sequences (with length T) is better or worse than the same model over short sequences (with length s). AUC: the higher,
the better; Log-loss: the lower, the better. The second best performance of each metric is underlined.)

AUC Log-loss
Model Group Model Len. Amazon Taobao XLong Amazon Ta%)bao XLong
GRU4Rec s 0.7669 0.8431 0.8716 0.5650 0.4867 0.4583
Group 2 Caser s 0.7509 0.8260 0.8467 0.5795 0.5094 0.4955
DIEN s 0.7725 0.8914 0.8725 0.5604 0.4184 0.4515
RUM s 0.7434 0.8327 0.8512 0.5819 0.5400 0.4931
Group 1 DNN T 0.7546 0.7460 0.8152 0.6869 0.5681 0.5365
SVD++ T 0.7155 0.8371 0.8008 0.6216 0.8371 1.7054
GRU4Rec T 0.7760 T 0.8471 T 0.8702 | 0.5569 T 0.4827 T 0.4630 |
Caser T 0.7582 T 0.8745 T 0.8390 | 0.5704 T 0.4550 T 0.5050 |
Group 2 DIEN T 07770 T 0.8934T 08716 | 055647 041557  0.4559 |
RUM T 074647 083707 086497 | 06301 049667 046207
LSTM T 0.7765 0.8681 0.8686 0.5612 0.4603 0.4570
Group 3 SHAN T 0.7763 0.8828 0.8369 0.5595 0.4318 0.5000
HPMN T | [0.7809* 0.9240"  0.8929* 0.5535* 0.3487*  0.4150*|
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Visualized Analysis e [
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Conclusion A

= First work proposes lifelong sequential modeling

= Construct hierarchical periodical memory network to model long-term

sequential dependency
= Dynamic read-write operations

= Significantly improved the performance

= Acknowledgement

= Alibaba Innovation Research (AIR) ﬂ

= National Natural Science Foundation of China Alibaba G‘roup




