Optimization for
Training Deep Models

presented by Kan Ren

Table of Contents

» Optimization for machine learning models
e Challenges of optimizing neural networks
o Optimizations

« algorithms

Initializations

adapting the learning rate

leveraging second derivatives

optimization algorithms and meta-algorithms

How Learning Differs
from Pure Optimization

Optimization for ML

* Goal and Objective Function
ML (goal not always equal to obj func)
» (Goal: evaluation measure AUC
e Objfunc: cross entropy, squared |oss

* Pure Optimization (goal = obj func)

Obijective Function

Empirical Risk Minimization

e Risk minimization

e Empirical risk minimization

* it P*(X,y) = p(X,y)

ML is based on empirical risk, OPT is based on
true risk.

Surrogate Loss Function

* Challenges:

e empirical risk minimization is prone to overtitting

e 0-1 loss with no derivatives
e Solution

e negative log-likelihood of the correct class as surrogate
for O-1 loss

ML especially for DL is usually based on surrogate loss
functions.

| ocal Minima

ML minimizes a surrogate loss and halts when a
convergence criterion (e.q. early stop) is
satistied. 1.e. drop into a local minima

e converges even when gradient is still large

 OPT converges when gradient becomes very
small.

Batch and Minibatch

* ML optimization algorithms typically compute update
based on an expected value of cost function using only a
subset of the terms of the full cost function.

e Why

e more computations, not much more ettectiveness

e redundancy within training sets 0—/ \/’f_?,

e batch/deterministic gradient methods = utilize all samples

e stochastic gradient descent = utilize 1 sample

Mini-batch

e utilize >1 and < all samples
e factors of mini-batch size
* more accurate estimate of the gradient
* multicore architectures underutilize extremely small batches
* memory in parallel system scales batch size
e specific hardware better run with specific sizes of arrays

e small batch offers regularizing effect (Wilson 2003)

Mini-batch

« Unrepeated mini-batch learning models generalization error.

g = V'0]*(9) - ZZ p(lata(mf I/)vaL(f(:& 9) ‘]/)
Y

£Zr

e Tips of mini-batch learning
» shuffle dataset

« parallel computing

Challenges in Neural
Network Optimization

Challenges

e (3eneral non-convex case
e [ll-conditioning
e methods to solve it needs modification for NN

e | ocal Minima

ll-conditioning

f@) ~ f@0) + @ -2)Tg+ (2 - =) Hz -z)

1.0
o 0.9
S 0.8
S

2 0.7 F

®
- 0.6 F
Q

= 0.5 F

(2]

4 & 04F
8%

2 0.3 |

] O 02k

|]]]] 0.1] 1
—50 0 50 100 150 200 250 0 50 100 150 200 250

Training time (epochs) Training time (epochs)

=
—
O
-
+
-
2
o
©
-
@)

| ocal minima

* Model identifiability

* A model is said to be identifiable it a sufficiently
large training set can rule out all but one setting
of the model’s parameters.

e models with latent variables are often not
identifiable

 m layers with n units each -> n!Am ways of
arranging hidden unites (weight space symmetry)

©
=
=
-
[$
O
O
_

Saddle Points

e Gradient Descent is designed to move
“downhill”.

 Newton's method is to solve a point where the
gradient is zero.

 Dauphin (2014): saddle free Newton method

L ong-lerm Dependencies

 Repeated application of the same parameters
(RNN)

Wt = (VdiagA\)V ™Y’ = Vdiag(A)'V

Poor correspondence between

local and global structure

S
S

Basic Algorithms

Stochastic Gradient Descent

» sufficient condition to guarantee convergence of

e a bit higher than the best performing learning
rate monitored in the first 100 iterations or so.

Stochastic Gradient Descent

Algorithm 8.1 Stochastic gradient descent (SGD) update at training iteration k&

Require: Learning rate €.
Require: Initial parameter 6
while stopping criterion not met do

Sample a minibatch of m examples from the training set {z{!), ... ™)} with

corresponding targets y().
y oradient eatimata: & IRvi e (1) - (%)
Compute gradient estimate: g < +=Vy> . L(f(x'";0),y'")
Apply update: @ < 0 — ¢g

end while

Convergence Rate of SGD

* excess error: e = J(w) - min_w J(w)
* after k iterations
e convex problem: e = O(1/sgrt(k))
e strong convex: e = O(1/k)

* presumably overfit when converge taster than
O(1/k) of generation error, unless make some
assumptions

Viomentum

vV av —€Vy < ZL(f(ac("); 9).ym)>
m

60— 0+ v.

* v (velocity) is exponentially decaying average of
negative gradient

e Unit mass

—30 —20 —10 O 10 20

Viomentum

e \When the same direction occurs, the maximum
terminal velocity happens when terminal velocity
ends In

+ |f alpha = 0.9/0.99/...

Physical View of Momentum

* position

e twoO forces
e downhill force

* Viscous drag force

Nesterov Momentum

1"
v av —€Vg |— ZL (f(a;('); 0 + nv).y('))}

T =
1=1

6 «— 6+ v,

add a correction factor to the standard method
of momentum

convex batch gradient case: O(1/kA2)
convergence of excess error

stochastic gradient descent O(1/k)

Initialization Strategies

Difficulties

 Deep learning has no such luxuries.

 Normal Equation

e Convergence to acceptable solution regardless of initialization
e Simple initialization strategies

* achieve good properties after initialization

* no idea about which property is preserved after proceeding

e Some initial points may be beneficial for optimization but
detrimental for generalization

Break Symmetry

e Same inputs, same activation function, better to
initialize different parameters

* AIms to capture more patterns in both feed-
forward and back-propagation procedures

 Random initialization from a high-entropy
distribution over a high-dimensional space Is
computationally cheaper and unlikely to
symmetry.

Random Initialization

Drawn from Gaussian Distribution or uniform
distribution

not very small, large weights may help more to
break symmetry

not very large, may activation function saturation
or hard to optimize

Heuristic: Uniform Distribution

* nitialize the weights of a fully connected layer
with m inputs and n outputs by sampling from

U(-1/sart(m), 1/sqrt(n))

e GGlorot 2010: normalized initialization

* assumes a chain of matrix multiplication
without non linearities

(__‘ (f‘
W, ~U(—— !

/1T + n’ /M —+ 'n.)

Heuristic: Orthogonal Matrix

e Saxe 2013: orthogonal matrix initialization

e chosen scaling or gain factor for the nonlinearity
applied at each layer

* They derive specific values of the scaling factor for
different types of nonlinear activation functions

o Sussillo 2014: correct gain factor
o sufficient to train as deep as 1000 layers

« without orthogonal initializations

Heuristic: Sparse Initialization

Martens 2010

e cach unit is initialized to have k non-zero
welghts

Impose sparsity

cost more to coordinate for Maxout unites with
several filters

Method: hyper-searching

 Hyperparameters for
* choice of dense or sparse initialization
* initial scale of the weights
e what to look at
» standard deviation of activations or gradients

* 0N a single mini-batch of data

Initialization tfor blas

if bias is for an output unit

e softmax(b) =c

to avoid saturation at initialization

e set bias 0.1 in ReLU hidden unit rather than O
for controller whether other units to participate

e Uu*h = 0/1, initially set h = 1

variance or precision parameter

ply | x) =Ny |w'z+b1/5)

Algorithms with
Adaptive Learning Rates

| earning Rate

* A hyper-parameter the most difficult to set
e Jacobs 1988: delta-bar-delta method

e partial derivatives remain the same sign, then
iIncrease the learning rate

Algorithm 8.4 The AdaGrad algorithm

Require: Global learning rate ¢
Require: Initial parameter 6
ire: Small constant d, perhaps 10, for srical stability
Require: Small constant 0, perhaps 10 ™', for numerical stability
Initialize gradient accumulation variable » = 0
while stopping criterion not met do
Sample a minibatch of m examples from the training set {z'!), ... ")} with
corresponding targets y(').
Compute gradient: g < —Vg), L(f(z");8),y")
Acc ate squared gradient: ®
Accumulate squared gradient: r < r +
Compute update: AO +— —= © g. Division and square root applied
Y4/ T
(,

element- \\f'iS(?)

Apply update: 6 < 0 + A8
end while

may cause premature/excessive decrease for learning rate

RMSProp

Algorithm 8.5 The RMSProp algorithm

Require: Global learning rate ¢, decay rate p.

Require: Initial parameter @

Require: Small constant &, usually 107°, used to stabilize division by small
numbers.
Initialize accumulation variables r = 0
while stopping criterion not met do

Sample a minibatch of m examples from the training set {z{!), ... ")} with

corresponding targets y(").
g e i) _1 | . i)
Compute gradient: g <~ —Vg > L(f(z");8),y")
Accumulate squared gradient: r < pr + (1 — p)g© g
A - g oy : v/ —_ € ' ' 1 £ 10 N I'a) 3 - vige
Compute parameter update: A@ 75 09 (T wpplied element-wise)
Apply update: @ < @ + A@O
end while

RMSProp with Nesterov momentum

Algorithm 8.6 RMSProp algorithm with Nesterov momentum

Require: Global learning rate ¢, decay rate p, momentum coefficient a.
Require: Initial parameter 6, initial velocity v.
Initialize accumulation variable » = 0
while stopping criterion not met do
Sample a minibatch of m examples from the training set {a(!) ,x (M} with
corresponding targets y('i).

Compute interim update: 0« 0+ av

Compute gradient: g < m_ > L(f) y ()

Accumulate gradient: r < pr + (1 — p)g > g

Compute velocity update: v + av — = ©g. (-= applied element-wise)

T 7

Apply update: @ < 0 + v
end while

Algorithm 8.7 The Adam algorithm

Require: Step size € (Suggested default: 0.001)
Require: Exponential decay rates for moment estimates, p; and p2 in [0,1).
(Suggested defaults: 0.9 and 0.999 respectively)

Require: Small constant ¢ used for numerical stabilization. (Suggested default:
107%)

Require: Initial parameters 6
Initialize 1st and 2nd moment variables s =0, »r =0

Initialize time step t = 0
while stopping criterion not met do
Sample a minibatch of m examples from the training set { L)

x (™)} with

corresponding targets y(-').

Compute gradient: g <~ =Vg >, L(f(z);0),y")

t<—1t+1

Update biased first moment estimate: s < p;s+ (1 — p1)g
Update biased second moment estimate: r <— por + (1 — p2)g © g

Correct bias in first moment: 8 <5 Sﬂ,
M1
Correct bias in second moment: 7 <— 5 7;),
T2
Compute update: Af = —e——
V7r—+o

Apply update: @ < 0 + A@

end while

(operations applied element-wise)

Visualization

e hitp://sebastianruder.com/optimizing-gradient-
descent/

Approximate 2nd-order Methods

Newton's Method

Algorithm 8.8 Newton’s method with objective
o L(f (2 9;0), y1).

Require: Initial parameter 6

Require: Training set of m examples
while stopping criterion not met do
) T 10 . 1 - » ' .
Compute gradient: g < —Vg » . L()‘(a:(’) 9). y('))
Compute Hessian: H « — DY L(f(z7:0),y")
1

m
Compute Hessian inverse: H

Compute update: A = —H g
Apply update: 8 =0 + A6
end while

0" =0y — |H(f(60)) + “’I]_lvﬂf(e“)

Conjugate Gradients

30 —20 —10 0 10 20 k
T 30

30 20 10 0 10 20

. Fletcher-Reeves: |
VoJ(6:)' VoJ(0:)

T Ve (0-1) Ve J(0:-1)
2. Polak-Ribiére:

J(6,) — VoJ(6:,-1) ' VaJ(6,)
Vo J(0:—1) Vo J(0:_1)

BFGS

Newton's method:

secant condition (quasi-Newton condition):

Approximation of inverse of the Hessian inverse
M, — M, | + (1 n (15[]\/11‘—1(15) ¢' ¢ <A¢l M;_ | +M;_¢pA')

AT ¢ ATop AT

where g;= Vo J(0:), b=¢g; —g;—1 and A = 6, — 6;_,

BFGS

Algorithm 8.10 BFGS method

Require: Initial parameters 6,
Initialize inverse Hessian My = 1
while stopping criterion not met do
Compute gradient: g = Vg J(6;)
Compute ¢ =g — gt—1, A =0y — 0;_

. _ . "M T Adp " M; 1 +M;i_1 AT
Approx H': M; = M,_ + (1 + qb—AT.’qb_ld’) ﬁ._ ‘7; — (%d)fl—qb)

Compute search direction: p; = Mgy
Perform line search to find: ¢ = argmin, J(6; + ¢p¢)
Apply update: 641 = 0+ + € py

end while*™

| -BFGS

e Limited Memory BFGS

pr = —q + bA +ag

Optimization Strategies
and Meta-Algorithms

Batch Normahzatlon

U = TWIW W3 . . . W]

r(wy — €gr)(w2 — €g2) ... (W — €qr)

e cffect of the update of parameters
for second-order term of Taylor series
approximation of y(hat).

e perhaps solution

e second-order / n-th order optimization,
hopeless

Batch Normalization

e H =(H-mu)/sigma

e MuU: Mmean of each unit

e sigma: standard deviation

e we back-propagate through these operations for
computing the mean and the standard deviation, and for
applying them to normalize H

e not changes a lot if lower layer changes

e except for lower layer weights to O or changing the sign

Batch Normalization

e expressions of NN has been reduced
e replace H with

e gamma and beta are learned

Coordinate Descent

e repeatedly cycling learning through all variables

* may has problem in some cost functions, e.q.

Polyak Averaging

Supervised Pretraining

* Pretraining: learn for a difficult task from a simple
modadel

 (Greedy: break a problem into comopnents

Greedy Supervised Pretraining

. i Wm.\’
(b)
U2 i
2)

y

- /7
¥
\

W.\‘ . i
AT N

W(l) vt oy) wi f
\ /

Related Work: Yosinskl 2014

* Pretrain a CNN with 8 layers on a set of tasks

e |nitialize a same-size net with first k layers of the
first net

Related Work: FitNets

e train a low & fat teacher net
e then train a deep & thin student net to
* predict the output for the original task

* predict the value of the middle layer of the
teacher network

Designing Models to Aid
Optimization

e |[n practice, it is more important to choose a
model family that is easy to optimize than to
use a powerful optimization algorithm.

» skip connections (Srivastava 2015)

* adding extra copies to the output (GooglLeNet,
Szegedy 2014, Lee 2014)

Continuation Methods

e The series of cost functions are designed so that a
solution to one Is a good Initial point of the next.

e aim to overcome the challenge of local minima

e reach a global minimum despite the presence of many
local minima

* "blurring” the original cost function (non-convex to convex)

Table of Contents

» Optimization for machine learning models
e Challenges of optimizing neural networks
o Optimizations

« algorithms

Initializations

adapting the learning rate

leveraging second derivatives

optimization algorithms and meta-algorithms

