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How Learning Differs 
from Pure Optimization 



Optimization for ML

• Goal and Objective Function 

• ML (goal not always equal to obj func) 

• Goal: evaluation measure AUC 

• Obj func: cross entropy, squared loss 

• Pure Optimization (goal = obj func)



Objective Function



Empirical Risk Minimization

• Risk minimization 

• Empirical risk minimization 

• if p*(x,y) = p(x,y) 

• ML is based on empirical risk, OPT is based on 
true risk.



Surrogate Loss Function
• Challenges: 

• empirical risk minimization is prone to overfitting 

• 0-1 loss with no derivatives 

• Solution 

• negative log-likelihood of the correct class as surrogate 
for 0-1 loss 

• ML especially for DL is usually based on surrogate loss 
functions.



Local Minima

• ML minimizes a surrogate loss and halts when a 
convergence criterion (e.g. early stop) is 
satisfied. i.e. drop into a local minima 

• converges even when gradient is still large 

• OPT converges when gradient becomes very 
small.



Batch and Minibatch
• ML optimization algorithms typically compute update 

based on an expected value of cost function using only a 
subset of the terms of the full cost function. 

• why 

• more computations, not much more effectiveness 

• redundancy within training sets 

• batch/deterministic gradient methods = utilize all samples 

• stochastic gradient descent = utilize 1 sample



Mini-batch
• utilize >1 and < all samples 

• factors of mini-batch size 

• more accurate estimate of the gradient 

• multicore architectures underutilize extremely small batches 

• memory in parallel system scales batch size 

• specific hardware better run with specific sizes of arrays 

• small batch offers regularizing effect (Wilson 2003)



Mini-batch
• Unrepeated mini-batch learning models generalization error. 

• Tips of mini-batch learning 

• shuffle dataset 

• parallel computing



Challenges in Neural 
Network Optimization



Challenges

• General non-convex case 

• Ill-conditioning 

• methods to solve it needs modification for NN 

• Local Minima



ill-conditioning



Local minima
• Model identifiability 

• A model is said to be identifiable if a sufficiently 
large training set can rule out all but one setting 
of the model’s parameters. 

• models with latent variables are often not 
identifiable 

• m layers with n units each -> n!^m ways of 
arranging hidden unites (weight space symmetry)



Local minima
• Problematic case 

• high cost in comparison to the global minima. 

• Saddle points 

• higher dimensional, more saddle points, less 
local minima/maxima. why? 

• cost (likely): local minima < saddle point < local 
maxima



Saddle Points

• Gradient Descent is designed to move 
“downhill”. 

• Newton’s method is to solve a point where the 
gradient is zero. 

• Dauphin (2014): saddle free Newton method



Long-Term Dependencies

• Repeated application of the same parameters 
(RNN)



Poor correspondence between 
local and global structure



Basic Algorithms



Stochastic Gradient Descent

• sufficient condition to guarantee convergence of 
SGD 

•   

• a bit higher than the best performing learning 
rate monitored in the first 100 iterations or so.



Stochastic Gradient Descent



Convergence Rate of SGD
• excess error: e = J(w) - min_w J(w) 

• after k iterations 

• convex problem: e = O(1/sqrt(k)) 

• strong convex: e = O(1/k) 

• presumably overfit when converge faster than 
O(1/k) of generation error, unless make some 
assumptions



Momentum

• v (velocity) is exponentially decaying average of 
negative gradient 

• unit mass



Momentum

• When the same direction occurs, the maximum 
terminal velocity happens when terminal velocity 
ends in 

• If alpha = 0.9/0.99/...



Physical View of Momentum
• position 

• force onto the particle 

• velocity of the particle at time t  

• two forces 

• downhill force 

• viscous drag force 



Nesterov Momentum

• add a correction factor to the standard method 
of momentum 

• convex batch gradient case: O(1/k^2) 
convergence of excess error 

• stochastic gradient descent O(1/k)



Initialization Strategies



Difficulties
• Deep learning has no such luxuries. 

• Normal Equation 

• Convergence to acceptable solution regardless of initialization 

• Simple initialization strategies 

• achieve good properties after initialization 

• no idea about which property is preserved after proceeding 

• Some initial points may be beneficial for optimization but 
detrimental for generalization



Break Symmetry
• Same inputs, same activation function, better to  

initialize different parameters 

• Aims to capture more patterns in both feed-
forward and back-propagation procedures 

• Random initialization from a high-entropy 
distribution over a high-dimensional space is 
computationally cheaper and unlikely to 
symmetry.



Random Initialization

• Drawn from Gaussian Distribution or uniform 
distribution 

• not very small, large weights may help more to 
break symmetry 

• not very large, may activation function saturation 
or hard to optimize



Heuristic: Uniform Distribution

• initialize the weights of a fully connected layer 
with m inputs and n outputs by sampling from 
U(-1/sqrt(m), 1/sqrt(n)) 

• Glorot 2010: normalized initialization 

• assumes a chain of matrix multiplication 
without non linearities 

•



Heuristic: Orthogonal Matrix
• Saxe 2013: orthogonal matrix initialization 

• chosen scaling or gain factor for the nonlinearity 
applied at each layer 

• They derive specific values of the scaling factor for 
different types of nonlinear activation functions 

• Sussillo 2014: correct gain factor 

• sufficient to train as deep as 1000 layers  

• without orthogonal initializations



Heuristic: Sparse Initialization

• Martens 2010 

• each unit is initialized to have k non-zero 
weights 

• impose sparsity 

• cost more to coordinate for Maxout unites with 
several filters



Method: hyper-searching
• Hyperparameters for 

• choice of dense or sparse initialization 

• initial scale of the weights 

• what to look at 

• standard deviation of activations or gradients 

• on a single mini-batch of data



Initialization for bias
• if bias is for an output unit 

• softmax(b) = c 

• to avoid saturation at initialization 

• set bias 0.1 in ReLU hidden unit rather than 0 

• for controller whether other units to participate 

• u*h ≈ 0/1, initially set h ≈ 1 

• variance or precision parameter 

•



Algorithms with 
Adaptive Learning Rates



Learning Rate

• A hyper-parameter the most difficult to set 

• Jacobs 1988: delta-bar-delta method 

• partial derivatives remain the same sign, then 
increase the learning rate



AdaGrad

may cause premature/excessive decrease for learning rate



RMSProp



RMSProp with Nesterov momentum



Adam



Visualization

• http://sebastianruder.com/optimizing-gradient-
descent/



Approximate 2nd-order Methods



Newton's Method



Conjugate Gradients



BFGS

• Newton's method: 

• secant condition (quasi-Newton condition): 

• Approximation of inverse of the Hessian inverse 

•



BFGS



L-BFGS

• Limited Memory BFGS 

•



Optimization Strategies 
and Meta-Algorithms



Batch Normalization

• effect of the update of parameters has                    
for second-order term of Taylor series 
approximation of y(hat).  

• perhaps solution 

• second-order / n-th order optimization, 
hopeless



Batch Normalization
• H' = (H - mu) / sigma 

• mu: mean of each unit 

• sigma: standard deviation 

• we back-propagate through these operations for 
computing the mean and the standard deviation, and for 
applying them to normalize H 

• not changes a lot if lower layer changes 

• except for lower layer weights to 0 or changing the sign



Batch Normalization

• expressions of NN has been reduced 

• replace H' with  

• gamma and beta are learned



Coordinate Descent

• repeatedly cycling learning through all variables 

• may has problem in some cost functions, e.g.



Polyak Averaging



Supervised Pretraining

• Pretraining: learn for a difficult task from a simple 
model 

• Greedy: break a problem into comopnents



Greedy Supervised Pretraining



Related Work: Yosinski 2014

• Pretrain a CNN with 8 layers on a set of tasks 

• Initialize a same-size net with first k layers of the 
first net



Related Work: FitNets

• train a low & fat teacher net 

• then train a deep & thin student net to 

• predict the output for the original task 

• predict the value of the middle layer of the 
teacher network



Designing Models to Aid 
Optimization

• In practice, it is more important to choose a 
model family that is easy to optimize than to 
use a powerful optimization algorithm.

• skip connections (Srivastava 2015) 

• adding extra copies to the output (GoogLeNet, 
Szegedy 2014, Lee 2014)



Continuation Methods
• The series of cost functions are designed so that a 

solution to one is a good initial point of the next. 

•   

• aim to overcome the challenge of local minima 

• reach a global minimum despite the presence of many 
local minima 

• "blurring" the original cost function (non-convex to convex) 

•
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