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Background Online Advertising

Online Service and Marketing

Online service has applied everywhere in our life

Recommendation: Douban Music, Taobao product, etc.
Aggregation: News feed, Search Engine, etc.
Community: QA Websites, Social Media, etc.

Advertising has become the major income source for online services.
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Background Online Advertising

Online Advertising

Online Advertising as a Service

Bridge the gap between the user and the product seller in a more flexible,
effective and accurate paradigm.
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Background Online Advertising

Online Advertising

Types of Online Advertising:
Search engine advertising;
Display advertising;
Mobile advertising, etc.

Nowadays, performance-based ads has drawn huge attentions.
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Background Online Advertising

Goal of Computer

Goal of Computer

Address the right user with the right message in the right context and
at the right prices.
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Background Online Advertising

Display Advertising

Example

User Profiling: model the attributes of different users.

User Targeting: buy a bundle of user volume with targeted attributes.
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Background Real-time Bidding

Real-time Bidding (RTB)

We are mainly focusing on the demand side (advertiser side).
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Background Real-time Bidding

Second Price Auction in RTB

Win and pay the second highest price, lose otherwise do nothing.
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Background Research Topics
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Background Research Topics

Components of Bidding Strategy

CTR: Click Through Rate.
CVR: Conversion Rate.
Bid Landscape: The probability density function of the market price.
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Research Problems

Research Problems

Utility: User Response Prediction

Model the behavior patterns of the user and predict the user response on
the given ad impression.

Decision: the Bidding Function

Sequential decision making (bidding in the RTB auction) with the
consideration of total budgets.

Cost: Bid Landscape Forecasting

Estimate the cost (market price) for the given ad request, and predict the
winning probability of the given bid price.
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Research Problems User Response Prediction

Utility Estimation: User Response Prediction

Problem Definition

Given feature x of the user and the ad, predict the probability of user taking
action (click or conversion) on the proposed ads Pr(y = 1|x).

Data Challenges

Categorical Data: { Location=Shanghai, Gender=Male ... }

Sparse Input: x = [0, 0, 1, 0, . . . , 0, 1, 0, . . .]
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Research Problems User Response Prediction

Related Work of User Response Prediction
Regression Model

Logistic Regression (LR)
K.-c Lee et al. Estimating Conversion Rate in Display Advertising from Past Performance Data. KDD 2012

Tree-based Model
X. He et al. Practical Lessons from Predicting Clicks on Ads at Facebook. ADKDD 2014

Factorization Machines
A.K. Menon et al. Response prediction using collaborative filtering with hierarchies and side-information. KDD
2011
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Research Problems User Response Prediction

Related Work
Other Variants

Bayesian Probit Regression
Web-scale Bayesian Click-through Rate Prediction for Sponsored Search Advertising in Microsoft’s Bing Search
Engine, T. Graepel et al. ICML 2010

Factorization Machine with FTRL
A.-P. Ta. Factorization Machines with Follow-The-Regularized-Leader for CTR prediction in Display
Advertising. Big Data 2015

Deep Neural Networks
Q. Liu et al. A Convolutional Click Prediction Model. CIKM 2015.
W. Zhang et al. Deep Learning over Multi-field Categorical Data – A Case Study on User Response Prediction.
ECIR 2016.
Y. Qu, H. Cai, K. Ren. Product-based Neural Networks for User Response Prediction. ICDM 2016.
G. Zhou et al. Deep Interest Network for Click-Through Rate Prediction. KDD 2018
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Research Problems Objective Function

Related Work (cont.)
Objective Function

Squared Error

LSE =
1

2
(y − ŷ)2, y ∈ {0, 1}, ŷ ∈ [0, 1]

Cross Entropy

LCE = −y log ŷ − (1− y) log(1− ŷ), y ∈ {0, 1}, ŷ ∈ [0, 1]
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Research Problems Evaluation Measurements

Related Work (cont.)
Evaluation Measurements

Area under ROC Curve (AUC)

Relative Information Gain (Cross Entropy)
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Research Problems Evaluation Measurements

Related Work (cont.)
Traditional Bidding Function

Truthful Bidding Function

b(x) = Vaction · f (x),

where f is the utility estimation function, such as pCTR.

Linear Bidding Function

b(x) = φ · Vaction · f (x) = b0 · f (x).
C. Perlich et al. Bid optimizing and inventory scoring in targeted online advertising. KDD 2012.
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Research Problems Problem Setup

Problem Setup

Motivation

To make the user response prediction more precisely accurate considering
the context.

Rethinking about CTR estimation

Why do we regard the CTR estimation as a classification task?

What is the optimization objective for the advertiser? The accuracy
of pCTR?

Why is the bid price linear or positive correlated to the pCTR?
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Research Problems Problem Setup

Problems
Isolation Optimization and Joint Optimization

The related works only take classification error as the loss.
They do not consider the subsequent usage of the prediction model.

Our Solution

Embed the user response prediction model into the whole procedure
of the bidding. And take the overall profit as our learning objective
function, to maximize the gains of the advertiser.

K. Ren et al. User Response Learning for Directly Optimizing Campaign Performance in Display Advertising.
CIKM, 2016.

Kan Ren (Shanghai Jiao Tong University) Modeling and Decision Optimization in Real-time Bidding Display AdvertisingAug. 2018 23 / 98



Research Problems Optimization for Campaign Performance

Notations and descriptions

Notation Description

y The true label of user response.
x The bid request represented by its features.
θ The parameter of CTR estimation function.

fθ(x) the CTR estimation function to learn.
b(fθ(x)) The bid price determined by the estimated CTR,

b for short.
Rθ(·) The utility function.
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Research Problems Optimization for Campaign Performance

Market Modeling

Market Price

The second highest price proposed during an RTB auction (2nd price).

Market Price Distribution (p.d.f.)

pz(z), z ∈ N .

Winning Probability when Bidding at price b (c.d.f.)

w(b) =

∫ b

0
pz(z)dz . (1)

Expected Cost under 2nd Price Auction (if winning)

c(b) =

∫ b
0 zpz(z)dz

w(b)
=

∫ b
0 zpz(z)dz∫ b
0 pz(z)dz

. (2)
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Research Problems Optimization for Campaign Performance

Objective Function

Objective Function

θ∗ = arg max
θ

∫
x
Rθ(x , y ; b, v , c ,w)px(x)dx . (3)

Rθ(·) is the Utility Function.

Constant click value v limits the max bid.

We will propose two variants of Rθ(·).
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Research Problems Optimization for Campaign Performance

Expected Utility Model

Expected Utility (EU)

REU
θ (x , y) = [vy − c(b(fθ(x)))] · w(b(fθ(x))). (4)

Profit = [gain - (expected cost)] × winning probability

gain = click value × click indicator .
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Research Problems Optimization for Campaign Performance

Objective of EU

The overall expected direct profit of all the auctions can be calculated by
replacing the winning probability funcion w(b(·)) and the expected cost
function c(b(·)) into EU objective function as∑

(x ,y)∈D

REU
θ (x , y) =

∑
(x ,y)∈D

[vy − c(b(fθ(x)))] · w(b(fθ(x)))

=
∑

(x ,y)∈D

[
vy −

∫ b(fθ(x))
0 z · pz(z)dz∫ b(fθ(x))

0 pz(z)dz

]
·
∫ b(fθ(x))

0
pz(z)dz

=
∑

(x ,y)∈D

∫ b(fθ(x))

0
(vy − z) · pz(z)dz . (5)
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Research Problems Optimization for Campaign Performance

Optimal Parameter

Taking Eq. (5) into Eq. (3) with a regularization term turns our learning
problem into convex optimization:

θEU = arg min
θ
−

∑
(x ,y)∈D

REU
θ (x , y) +

λ

2
‖θ‖2

2 (6)

= arg min
θ

∑
x

∫ b(fθ(x))

0
(z − vy) · pz(z)dz +

λ

2
θTθ.

where the optimal value of θ is obtained by taking a gradient descent
algorithm.

Kan Ren (Shanghai Jiao Tong University) Modeling and Decision Optimization in Real-time Bidding Display AdvertisingAug. 2018 29 / 98



Research Problems Optimization for Campaign Performance

Gradient of EU

The gradient of REU
θ (x , y) with regard to θ is calculated as

∂REU
θ (x , y)

∂θ
= (

bid error︷ ︸︸ ︷
b(fθ(x))− vy) ·

market sensitivity︷ ︸︸ ︷
pz(b(fθ(x))) ·

∂b(fθ(x))

∂fθ(x)

∂fθ(x)

∂θ
+ λθ.

(7)

and we update for each data instance as θ ← θ − η ∂R
EU
θ (x ,y)
∂θ by above

chain rule. (SGD)
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Research Problems Optimization for Campaign Performance

Illustration of EU Update
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Figure: The illustration of the impact from the bid and market price of Expected
Utility (EU); click value v = 300.

Gradient of EU

∂REU
θ (x , y)

∂θ
= (

bid error︷ ︸︸ ︷
b(fθ(x))− vy) ·

market sensitivity︷ ︸︸ ︷
pz(b(fθ(x))) ·∂b(fθ(x))

∂fθ(x)

∂fθ(x)

∂θ
+ λθ.
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Research Problems Realization of Model

Question

Gradient of EU

∂REU
θ (x , y)

∂θ
= (

bid error︷ ︸︸ ︷
b(fθ(x))− vy) ·

market sensitivity︷ ︸︸ ︷
pz(b(fθ(x))) ·∂b(fθ(x))

∂fθ(x)

∂fθ(x)

∂θ
+ λθ.

Gradient of RR

∂RRR
θ (x , y)

∂θ
=
( bid error︷ ︸︸ ︷
− vy

b(fθ(x))
+

v(1− y)

v − b(fθ(x))

)
·

market sensitivity︷ ︸︸ ︷
pz(b(fθ(x)))

·∂b(fθ(x))

∂fθ(x)

∂fθ(x)

∂θ
+ λθ.

fθ(x)? b(fθ(x))? pz(z)?
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Research Problems Realization of Model

Realization of Model

Response Prediction Model fθ(x)

fθ(x) ≡ σ(θTx) =
1

1 + e−θT x
. (8)

Linear Bidding Strategy

b(fθ(x)) ≡ φ · v · fθ(x), (9)

where φ is the scaling parameter.
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Research Problems Realization of Model

Linear Gradient

Linear Gradient of EU

∂REU
θ (x , y)

∂θ
=φv2(σ(θTx)− y) · pz(b(fθ(x))) · (10)

σ(θTx)(1− σ(θTx))x + λθ.

Linear Gradient of RR

∂RRR
θ (x , y)

∂θ
=φv

(
− y

σ(θTx)
+

1− y

1− σ(θTx)

)
· (11)

pz(b(fθ(x))) · σ(θTx)(1− σ(θTx))x + λθ.
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Research Problems Links to Previous Work

Recall of Traditional Logistic Regression

Squared Error LR (SE)

LSE
θ (x , y) =

1

2
(y − σ(θTx))2,

∂LSE
θ (x , y)

∂θ
= (σ(θTx)− y)σ(θTx)(1− σ(θTx))x . (12)

Cross Entropy LR (CE)

LCE
θ (x , y) = −y log σ(θTx)− (1− y) log(1− σ(θTx)),

∂LCE
θ (x , y)

∂θ
= (σ(θTx)− y)x . (13)
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Research Problems Links to Previous Work

Discussion 1: Truthful Bidding Simplification

Simplification: Truthful Bidding, φ = 1

b(fθ(x)) = v · fθ(x). (14)

Corresponding Gradient of EU & RR

∂REU
θ (x , y)

∂θ
= v2(σ(θTx)− y) · pz(b(fθ(x))) (15)

· σ(θTx)(1− σ(θTx))x + λθ,

∂RRR
θ (x , y)

∂θ
= v(σ(θTx)− y)pz(b(fθ(x)))x + λθ, (16)

Adopting Truthful Bidding function, EU & RR have one more
component (market sensitivity) than SE & CE, respectively!
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Research Problems Links to Previous Work

Discussion 2: Uniform Market Price Distribution
Simplification

Simplification: Uniform Market Price Distribution

pz(z) = l . (17)

Corresponding Gradient of EU & RR

∂REU
θ (x , y)

∂θ
= v2l(σ(θTx)− y) · σ(θTx)(1− σ(θTx))x + λθ, (18)

∂RRR
θ (x , y)

∂θ
= vl(σ(θTx)− y)x + λθ. (19)

Adopting Truthful Bidding and uniform market price distribution,
EU & RR have totally degenerated to SE & CE!
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Research Problems Links to Previous Work

Summary of the Discussion

Table: The comparison of the model gradients (without regularization). LR:
logistic regression, TB: truthful bidding, LB: linear bidding, UM: uniform market
price distribution. LR and LR+TB+UM are equivalent (LR+TB reduces to the
baseline LR when assuming the uniform market price distribution).

Model Setting EU (SE) Gradient RR (CE) Gradient

LR (baseline)
∂LSE

θ (x,y)

∂θ
= (σ(θT x)− y) · σ(θT x)(1− σ(θT x))x ∂LCE

θ (x,y)

∂θ
= (σ(θT x)− y)x

LR+TB -
∂REU

θ (x,y)

∂θ
= v2(σ(θT x)− y) · pz (b(fθ(x))) · σ(θT x)(1− σ(θT x))x -

∂RRR
θ (x,y)

∂θ
= v(σ(θT x)− y) · pz (b(fθ(x))) · x

LR+TB+UM -
∂REU

θ (x,y)

∂θ
= v2l(σ(θT x)− y) · σ(θT x)(1− σ(θT x))x -

∂RRR
θ (x,y)

∂θ
= vl(σ(θT x)− y)x

LR+LB -
∂REU

θ (x,y)

∂θ
= φv2(φσ(θT x)− y) · pz (b(fθ(x)))

·σ(θT x)(1− σ(θT x))x
-
∂RRR

θ (x,y)

∂θ
= φv

(
− y
φσ(θT x)

+ 1−y
1−φσ(θT x)

)
· pz (b(fθ(x)))

·σ(θT x)(1− σ(θT x))x
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Research Problems Evaluations

Evaluation Flow
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Research Problems Evaluations

Evaluation Measures

AUC

RMSE

profit = gain - cost = Vclick · click # -
∑

cost

ROI = profit / cost

CTR = click # / impression #

eCPC = cost / click #

CPM = cost / impression #
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Research Problems Evaluations

Dataset

iPinYou

64.75M bids, 19.5 imps, 14.79 clicks and 16K expense on 9 camps over 10
days.

YOYI

443M imps, 362K clicks and 210K CNY expense over 8 days.
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Research Problems Evaluations

Compared Settings

User response prediction (truthful bidding function b(x) = v · f (x))

CE - Cross entropy loss logistic regression
SE - Squared loss logistic regression
EU - Expected utility model
RR - Risk return model
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Research Problems Evaluations

Accuracy of CTR Estimation

Table: Regression performances over campaigns. AUC: the higher, the better.
RMSE: the smaller, the better.

AUC RMSE (×10−2)
iPinYou SE CE EU RR SE CE EU RR

1458 .948 .987 .987 .977 3.01 1.94 2.42 2.32
2259 .542 .692 .674 .691 2.01 1.77 1.76 1.79
2261 .490 .569 .622 .619 1.84 1.68 1.71 1.68
2821 .511 .620 .608 .639 2.56 2.43 2.39 2.46
2997 .543 .610 .606 .608 5.98 5.82 5.84 5.82
3358 .863 .974 .970 .980 3.07 2.47 3.32 2.67
3386 .593 .768 .761 .778 2.95 2.84 3.32 2.85
3427 .634 .976 .976 .960 2.78 2.20 2.61 2.34
3476 .575 .957 .954 .950 2.50 2.32 2.39 2.33

Average .633 .794 .795 .800 2.97 2.61 2.86 2.69

YOYI .882 .891 .912 .912 11.9 11.7 11.8 11.6
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Research Problems Evaluations

Campaign Profit Evaluation (baselines)

Table: Direct campaign profit over baselines.

profit(×107) ROI
iPinYou SE CE SE CE

1458 3.2 3.6 4.2 6.6
2259 -0.32 0.40 -0.080 0.18
2261 0.29 0.63 0.26 0.40
2821 0.11 0.08 0.21 0.023
2997 0.11 0.14 0.42 0.71
3358 1.76 2.4 5.4 5.2
3386 0.51 1.6 0.16 1.2
3427 0.33 2.9 0.11 3.4
3476 0.65 3.1 0.36 3.5

Average 0.74 1.7 1.2 2.3

YOYI 665.6 669.5 1.8 1.9
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Research Problems Evaluations

Campaign Profit Evaluation

Table: Campaign profit improvement over baseline CE.

Profit gain ROI gain
iPinYou EU RR EU RR

1458 7.10% 9.00% 233% 267%
2259 81.6% 99.3% 233% 472%
2261 26.3% 31.1% 44.4% 91.2%
2821 573% 615% 1334% 943%
2997 5.00% 0.700% -3.60% -11.4%
3358 1.70% 6.70% 77.1% 77.7%
3386 -1.20% 2.50% 20.6% 58.3%
3427 5.50% 8.70% 52.0% 175%
3476 4.20% 8.60% 16.0% 91.1%
YOYI 9.04% 0.600% 14.8% 2.11%

Average +71.2% +78.2% +202% +217%
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Research Problems Evaluations

Overall Statistics

CTR (×10−4) eCPC
iPinYou SE CE EU RR SE CE EU RR

1458 34 33 59 190 17 11 4.3 3.4
2259 3.3 3.6 3.7 5.8 303 235 172 136
2261 2.4 2.7 3.0 2.8 234 212 188 168
2821 5.5 5.9 4.8 7.0 116 137 105 112
2997 31 25 26 27 9.8 8.2 8.3 8.6
3358 51 41 69 61 18 19 12 12
3386 7.8 11 13 15 90 48 43 36
3427 7.2 25 29 72.8 98 25 17.3 10
3476 6.4 16 17 33.1 111 34 30 20

Average 16 18 25 46 110 81 64 57
YOYI 16 18 26 24 12.9 12.4 11.3 12

CPM Win Rate
iPinYou SE CE EU RR SE CE EU RR

1458 57 37 25 65 0.22 0.24 0.13 .041
2259 100 84 64 78 0.89 0.63 0.44 0.24
2261 57 56 56 46 0.55 0.81 0.71 0.67
2821 63 80 50 78 0.12 0.63 0.48 0.45
2997 30 20 21 22 0.55 0.63 0.65 0.63
3358 92 77 80 70 0.11 0.20 0.11 0.13
3386 71 54 55 55 0.82 0.45 0.36 0.29
3427 70 60 49 75 0.75 0.26 0.22 .082
3476 71 55 50 65 0.49 0.31 0.31 0.15

Average 68 58 50 62 0.50 0.46 0.38 0.30

YOYI 20 23 29 30 0.36 0.30 0.22 0.22
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Research Problems Evaluations

Linear Gradient

Linear Gradient of EU

∂REU
θ (x , y)

∂θ
=φv2(σ(θTx)− y) · pz(b(fθ(x)))· (20)

σ(θTx)(1− σ(θTx))x + λθ.

Linear Gradient of RR

∂RRR
θ (x , y)

∂θ
=φv

(
− y

σ(θTx)
+

1− y

1− σ(θTx)

)
· (21)

pz(b(fθ(x))) · σ(θTx)(1− σ(θTx))x + λθ.
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Research Problems Evaluations

Bidding Analysis
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Figure: Analysis of bid price and market price distribution (iPinYou campaign
2259)
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Research Problems Evaluations

Online A/B Testing
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Figure: Online A/B testing results on YOYI PLUS, up to 25% improvements.
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Research Problems Bidding Strategy Optimization

Outline

1 Background
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Research Problems Bidding Strategy Optimization

Decision Optimization: the Bidding Function

Problem Definition

Propose the optimal bidding function b(x) to maximize the overall gains
(clicks, conversions or profits), under the constraints of budget B.
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Research Problems Bidding Strategy Optimization

Related Work (cont.)
Traditional Bidding Function

Truthful Bidding Function

b(x) = Vaction · f (x),

where f is the utility estimation function, such as pCTR.

Linear Bidding Function

b(x) = φ · Vaction · f (x) = b0 · f (x).
C. Perlich et al. Bid optimizing and inventory scoring in targeted online advertising. KDD 2012.

Kan Ren (Shanghai Jiao Tong University) Modeling and Decision Optimization in Real-time Bidding Display AdvertisingAug. 2018 52 / 98



Research Problems Bidding Strategy Optimization

Related Work (cont.)
Non-linear Bidding Function

Optimal Real-time Bidding Strategy

b()ORTB = arg max
b()

∫
x

clicks dx

subject to

∫
x

expected costs dx ≤ B .

⇒

b()ORTB = arg max
b()

∫
x
f (x)w(b(f (x)))px(x)dx ,

s.t.

∫
x
b(f (x))w(b(f (x)))px(x)dx ≤ B.

W. Zhang et al. Optimal Real-Time Bidding for Display Advertising. KDD 2014.
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Research Problems Bidding Strategy Optimization

Related Work (cont.)
Non-linear Bidding Function

θ is the pCTR function, w(·) is the winning probability estimation
function, b(·) is the bidding funciton.

W. Zhang et al. Optimal Real-Time Bidding for Display Advertising. KDD 2014.
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Research Problems Bidding Strategy Optimization

Problems of the Related Work

Naive assumption for the bidding function.

Zhang’s paper only considers first-price auction, which is not
appropriate in practice.

Our Solution

Unified learning objective of the overall profits for utility estimation, cost
estimation and bidding strategy optimization.

K. Ren et al. Bidding Machine: Learning to Bid for Directly Optimizing Profits in Display Advertising. TKDE 2018
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Research Problems Bidding Strategy Optimization

Bidding Machine - Joint Optimization Framework

(x , y): feature and label

v : value of click (constant)

fθ: utility (CTR) estimation function

b: bidding function (strategy)

wφ: winning probability

c : expected cost

The expected profit formulation is

R(b,θ,φ) =

∫
x

[vy − c]wφ · px(x)dx
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Research Problems Bidding Strategy Optimization

Bidding Machine - Joint Optimization Framework

wφ(b|x) =

∫ b

0
pz(z |x ;φ)dz ,

c(b) =

∫ b
0 zpz(z)dz∫ b
0 pz(z)dz

,

R(b,θ,φ) =

∫
x

[vy − c(b(fθ(x)))]wφ(b(fθ(x)))px(x)dx

=
∑

(x ,y)∈D

[vy − c(b(fθ(x)))]wφ(b(fθ(x))).
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Research Problems Bidding Strategy Optimization

Derivation Result 1
Some interesting findings

Table: The comparison of the model gradients (without regularization). LR:
logistic regression, TB: truthful bidding, LB: linear bidding, UM: uniform market
price distribution. LR and LR+TB+UM are equivalent (LR+TB reduces to the
baseline LR when assuming the uniform market price distribution).

Model Setting EU (SE) Gradient RR (CE) Gradient

LR (baseline)
∂LSE

θ (x,y)

∂θ
= (σ(θT x)− y) · σ(θT x)(1− σ(θT x))x ∂LCE

θ (x,y)

∂θ
= (σ(θT x)− y)x

LR+TB -
∂REU

θ (x,y)

∂θ
= v2(σ(θT x)− y) · pz (b(fθ(x))) · σ(θT x)(1− σ(θT x))x -

∂RRR
θ (x,y)

∂θ
= v(σ(θT x)− y) · pz (b(fθ(x))) · x

LR+TB+UM -
∂REU

θ (x,y)

∂θ
= v2l(σ(θT x)− y) · σ(θT x)(1− σ(θT x))x -

∂RRR
θ (x,y)

∂θ
= vl(σ(θT x)− y)x

LR+LB -
∂REU

θ (x,y)

∂θ
= φv2(φσ(θT x)− y) · pz (b(fθ(x)))

·σ(θT x)(1− σ(θT x))x
-
∂RRR

θ (x,y)

∂θ
= φv

(
− y
φσ(θT x)

+ 1−y
1−φσ(θT x)

)
· pz (b(fθ(x)))

·σ(θT x)(1− σ(θT x))x
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Research Problems Bidding Strategy Optimization

Derivation Result 2
Optimal Bidding Strategy for Profit Optimization under 2nd Price Auction without
Budget Constraint

R(b,θ,φ) =

∫
x

[vy − c(b(fθ(x)))]wφ(b(fθ(x)))px(x)dx

=
∑

(x ,y)∈D

[vy − c(b(fθ(x)))]wφ(b(fθ(x))).

Theorem

We can theoretically prove that the optimal bidding function is the truthful
bidding for profit maximization under second-price auction.

b(x) = v · f (x) ,
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Research Problems Bidding Strategy Optimization

Derivation Result 3
Optimal Bidding Strategy for Profit Optimization under 2nd Price Auction

Theorem

The optimal bidding function under a symmetric game of repeated
auctions with budget constraints is linear to the estimated utility.

max
b()

T

∫
r
[u(r)− c(b(τ))]wb(b(τ))pr (r)dr ,

s.t. T

∫
r
c(b(τ))wb(b(τ))pr (r)dr = B ,

(22)

here we assume that the bidding is based on a signal τ related with the
CTR r = f (x).
Here v is the click value of the advertiser.We derive in the paper that

b(r) =
vr

λ+ 1
. (23)
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Research Problems Bidding Strategy Optimization

Derivation Result 4
What if all the advertisers adopt the same bidding strategy?

Theorem

The bid price is monotonously increasing w.r.t. the number of the
participating advertiser bidders, and the tragedy of the commons will
occur in the market.

b(r) =
vr

λ+ 1
⇒ Br

T
∫
r

∫ r
0 t(n − 1)Fr (t)n−2 pr (t) dt pr (r)dr

. (24)

The profit of the platform will increase :)
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Derivation Result 4
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Research Problems Bidding Strategy Optimization

Bidding Machine - Joint Optimization Framework

User

Other Advertisers

0. Ad Request

Ad Exchanger

1. Bid
Request

3. Win
Notice

2. Bid
Response

4. Ad 
Creative

5. User
Response

z: Market 
Price

x: Request
Feature

Training Flow

Learning
Performing

Data Flow

Bidding Machine y: true user response

Bid Strategy

User Response 
Prediction

Bid Landscape 
Forecasting

Bid O
ptim

ization

Market
Modeling

Ut
ilit

y 
Es

tim
at

io
n

yzx

Kan Ren (Shanghai Jiao Tong University) Modeling and Decision Optimization in Real-time Bidding Display AdvertisingAug. 2018 62 / 98



Research Problems Bidding Strategy Optimization

Bidding Machine
Exp. Results
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Research Problems Bidding Strategy Optimization

Bidding Machine
Offline Results
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Research Problems Bidding Strategy Optimization

Bidding Machine
Offline Results

Table: Campaign profit for Single CTR estimation and Binary Optimization with
market modeling.

1458 2259 2261 2821 2997 3358 3386 3427 3476 Average

AUC
EU .987 .674 .622 .608 .606 .970 .761 .976 .954 .795
RR .977 .691 .619 .639 .608 .980 .778 .960 .950 .800

BM(MKT) .981 .678 .647 .620 .603 .980 .788 .973 .955 .803

Profits (×107)
EU 3.91 .732 .797 .539 .147 2.42 1.58 3.05 3.25 1.82
RR 3.98 .803 .827 .572 .141 2.54 1.64 3.14 3.39 1.89

BM(MKT) 4.02 .766 .863 .669 .148 2.57 1.73 3.18 3.31 1.91

ROI
EU 19.2 .607 .582 .333 .679 9.26 1.46 5.30 4.02 4.60
RR 24.3 1.03 .771 .247 .624 9.29 1.90 9.57 6.63 6.04

BM(MKT) 31.7 .829 .692 .476 .733 8.83 1.08 9.70 5.40 6.61

eCPC
EU 4.27 172 187 104 8.33 11.4 42.5 17.3 30.0 64.3
RR 3.39 136 167 112 8.61 11.4 36.1 10.3 19.7 56.1

BM(MKT) 2.62 151 175 94.7 8.07 11.9 50.2 10.1 23.5 58.7
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Research Problems Bidding Strategy Optimization

Bidding Machine
Online Results 1

Figure: Online results on YOYI MOBILE (Phase I in 2016). Up to 25%
improvement over traditional CTR model on profits.
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Research Problems Bidding Strategy Optimization

Bidding Machine
Online Results 2
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Figure: Online results on YOYI MOBILE (Phase II in 2017). Up to 8%
improvements over traditional linear bidding methods.
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Research Problems Reinforcement Learning for Advertising

Bidding as Sequential Decision Making

Relationship between RTB & RL

Real-time Bidding is a sequence of decision making.

The goal is to maximize the cumulative rewards (clicks, etc.) of the
advertiser (bidder).

The constraint is the total budget of the advertiser.
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Research Problems Reinforcement Learning for Advertising

RL for Bidding

Bidding Agent
Environment[s] left volume t

[s] bid request x

[a] bid a

[r] auction win, cost δ
[r] user click r

[s] left budget b

[s] state  
[a] action  
[r] reward

Figure: Real-time Bidding as reinforcement learning.

MDP Formulation

state: (t, b, x) with remaining auction num. t, remaining budget b and the
received auction feature x .

action: bid price.

reward: predicted CTR (as model-baed RL).

P = Pr((t − 1, b − δ, x t−1)|(t, b, x t), δ) which is the winning probability,
where delta is the bid price.

1) H. Cai, K. Ren, et al. Real-Time Bidding by Reinforcement Learning in Display Advertising. WSDM 2017
2) Y. Song, K. Ren, et al. Volume Ranking and Sequential Selection Programmatic Display Advertising. CIKM 2017
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Research Problems Reinforcement Learning for Advertising

Learned Value Function

b (×10 3)

20
40

60
80

100
t (
×10

2 )

0
10

20
30

40
50

D
(t
, b

)
(×

10
−5

)

0
1
2
3
4
5
6
7
8
9

D(t, b)

b (×10 3)

20
40

60
80

100
t (
×10

2 )

0
10

20
30

40
50

V
(t
, b

)

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

V(t, b)

Figure: The learned value function over states.
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Research Problems Reinforcement Learning for Advertising

Online Results
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Figure: The online results on VLion ad platform.
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Research Problems Conversion Attribution

Conversion Attribution
Problem Definition

Two view of the problem

Horizontal View: Given a sequence of user activities leading to a conversion,
assign the attribution credits to each touch point for the (negative) contribution
on the final conversion.
Vertical View: Calculate the conversion attribution over difference channels or
subcampaigns.
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Research Problems Conversion Attribution

Problem Challenge: Multi-touch Conversion Attribution

Cons of the traditional methods

Prediction upon single point: ignore the sequential data patterns in model
training.

Rule-based method: heuristically assign the conversion credits on to the
multiple touches.

Search Social Website

No Conversion

User 1

Search Website Search

No Conversion

User 3

SocialSearch Search Website

Conversion

User 2

Impression

Click

Our Solution
Use recurrent neural network to model the sequential user activities.

Assign “attention” to the touch points to model the conversion attributions.

Simultaneously model impression-level and click-level patterns for conversion estimation.
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Research Problems Conversion Attribution

Dual-attention Mechanism for Conversion Attribution
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K. Ren et al. Learning Conversion Attribution with Dual-attention Mechanism for Online Advertising. CIKM, 2018.
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Attention Implementation
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Research Problems Conversion Attribution

Visualization of the Attribution
Horizontal Sequence Level
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Figure: Touch point level attribution statistics (Miaozhen).
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Research Problems Conversion Attribution

Visualization of the Attribution
Vertical Channel Level

Figure: Attribution of different channels on Miaozhen.
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Research Problems Conversion Attribution

Visualization of the Attribution Preferences
Click-level v.s. Impression-level
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Figure: The distribution of λ over Criteo dataset.
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Outline

1 Background
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Cost Estimation: Bid Landscape Forecasting
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Research Problems Bid Landscape Forecasting

Challenge: Modeling Market Price Distribution

Win and pay the second highest price, lose otherwise do nothing.
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Research Problems Bid Landscape Forecasting

Cost Estimation: Bid Landscape Forecasting

Problem Definition

Model the probability density function pz(z ; x) of the market price z w.r.t.
the given feature x .
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Research Problems Bid Landscape Forecasting

Problem Analysis

No ground truth for either P.D.F. or C.D.F. of the market price.

There are censored data to handle (without knowledge of the true
market price).

Fine-grained forecasting for each individual sample.
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Research Problems Bid Landscape Forecasting

Related Work: Heuristic Form
Log-normal Form

pz(z) =
1

zσ
√

2π
e
−(ln z−µ)2

2σ2 , z > 0 .

Y. Cui et al. Bid landscape forecasting in online ad exchange marketplace. KDD 2011
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Research Problems Bid Landscape Forecasting

Related Work: Regression Model

zi as the predicted winning price,

zi ≈ βT xi + εi ,

εi ∼ N(0, σ2) ,

maximize
∑
i∈W

log(φ(
wi − βTW xi

σ
)) .

and miximize the log likelihood.
W. Wu et al. Predicting Winning Price in Real Time Bidding with Censored Data. KDD 2015
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Research Problems Bid Landscape Forecasting

Challenge: Modeling Right Censored Data
Right Censored

Right Censorship

As in 2nd price auction, if you lose, you only know that the market price is
higher than your bidding price, which result in right censorship.
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Research Problems Bid Landscape Forecasting

Handling Censorship with Kaplan-Merier Estimator

For winning auctions: We have the true market price value.

For lost auctions: We only know our proposed bid price and know
that the true market price is higher than that.

Intuition

More than considering Winning Logs, but also utilize Losing Logs.

Idea: Modeling Winning (Dying) Likelihood

w(bx) = 1−
∏
bj<bx

nj − dj
nj

, p(z) = w(z + 1)− w(z). (25)

bj < bj+1, dj is number of winning auctions by bj − 1, nj is number of lost
auctions by bj − 1. So

l(bx) =
∏

bj<bx

nj − dj
nj

.

Kan Ren (Shanghai Jiao Tong University) Modeling and Decision Optimization in Real-time Bidding Display AdvertisingAug. 2018 89 / 98



Research Problems Bid Landscape Forecasting

Tree-based Mapping

Censorship Handling

Using Kaplan Meier estimator to capture the right censored patterns.

Y. Wang, K. Ren, W. Zhang, Y. Yu. Functional Bid Landscape Forecasting for Display
Advertising. ECML-PKDD, 2016.
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Research Problems Bid Landscape Forecasting

Results

Table: Performance illustration. Average negative log probability (likelihood) of
five compared settings. ANLP: the smaller, the better.

ANLP
Campaign MM NM SM NTM STM

1458 5.7887 5.3662 4.7885 4.7160 4.3308
2259 7.3285 6.7686 5.8204 5.4943 5.4021
2261 7.0205 5.5310 5.1053 4.4444 4.3137
2821 7.2628 6.5508 5.6710 5.4196 5.3721
2997 6.7024 5.3642 5.1411 5.1626 5.0944
3358 7.1779 5.8345 5.2771 4.8377 4.6168
3386 6.1418 5.2791 4.8721 4.6698 4.2577
3427 6.1852 4.8838 4.6453 4.1047 4.0580
3476 6.0220 5.2884 4.7535 4.3516 4.2951

overall 6.5520 5.6635 5.0997 4.7792 4.6065

Kan Ren (Shanghai Jiao Tong University) Modeling and Decision Optimization in Real-time Bidding Display AdvertisingAug. 2018 91 / 98



Research Problems Bid Landscape Forecasting

Related Work: Censorship Handling with Mixture Model

zi = [Pr(zi < bi )βW + (1− Pr(zi < bi ))βL]T xi

= βTmixxi ,

Pr(zi < bi ) = p(x) .

(26)

W. Wu et al. Predicting Winning Price in Real Time Bidding with Censored Data. KDD 2015
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Related Work
DeepHit Model for Survival Analysis

C. Lee et al. DeepHit: A Deep Learning Approach to Survival Analysis with Competing Risks. AAAI 2018
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Problems in the Related Work

Heuristic assumption on the distribution.

Naive ensorship handling

Mixture model: combines probability and cumulative probability
in a simple way.
Tree-based model: uses counting-based statistics for censorship
handling.

DeepHit model: Sparse gradient signals, without consideration of
sequential patterns along time.

Our Solution (Under Review)

Using deep recurrent neural network to model the event rate at each
timestep (price).

Using maximum partial likelihood for censorship handling.
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Research Problems Bid Landscape Forecasting

Deep Survival Analysis

We utilize recurrent neural network to model sequential patterns in
the time series space.

We also adopt partial likelihood for censorship handling.

The model achieves state-of-the-art performance.

It can also inspire the survival analysis in other fields such as clinical
research.
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Thank you for your attention!

http://saying.ren
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