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Revision of Value-based RL TD: Sarsa and Q-learning
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Revision of Value-based RL TD: Sarsa and Q-learning

Difference

Exploration

Sarsa: on-policy
Q-learning: off-policy

Update Rule

Sarsa

Choose A′ from S ′ using policy derived from Q (e.g .ε− greedy)

Q(S ,A)← Q(S ,A) + α[r + γQ(S ′,A′)− Q(S ,A)]

Q-learning

Q(S ,A)← Q(S ,A) + α[r + γmax
a

Q(S ′, a)− Q(S ,A)]
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Deep Q-network Several Imrovements

Q-networks

Represent value function by Q-network with weights w

Q(s, a;w) ≈ Q∗(s, a) . (1)
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Deep Q-network Several Imrovements

Deep Q-network

Refer to D. Silver’s slides P31 - P45.
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Deep Q-network Several Imrovements

Duelling network

Figure: Duelling network: split Q-network into two channels
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Issues in Q-learning Overestimation

Overestimation
Preliminaries

Recall that
Q(s, a)←− ra

s + γ maxâQ(s ′, â) (2)

Repeated application of this update equation eventually yields Q-values
that give rise to a policy which maximizes the expected cumulative
discounted reward1 in the look-up table case.
The max operation may cause some problems under the approximation
scenario.

1C. J. C. H.Watkins, Learning from Delayed Rewards. PhD thesis, Kings College,
Cambridge, England, 1989.
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Issues in Q-learning Overestimation

Overestimation

Assume Qapprox (·) representing implicit target values Qtarget , corrupted by
a noise term Y such that

Qapprox (s ′, â) = Qtarget(s ′, â) + Y â
s′

Zs
def
= ra

s + γ max
â

Qapprox (s ′, â)−
(
ra
s + γ max

â
Qtarget(s ′, â)

)
= γ

(
max

â
Qapprox (s ′, â)−max

â
Qtarget(s ′, â)

) (3)

The key observation is

E [Y â
s′ ] = 0, ∀â often

=⇒ E [Zs ] > 0 .
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Issues in Q-learning Overestimation

Expectation of Z

Lemma

Let n denote the number of actions applicable at state s ′. If all n actions
share the same target Q-value, i.e., ∃q : ∀â : q = Qtarget(s ′, â), then the

average overestimation E [Zs ] is γc with c
def
= εn−1

n+1 .

The proof can be referred to the paper2.

Corollary

0 ≤ E [Zs ] ≤ γc with c = εn−1
n+1 .

2
Thrun S, Schwartz A. Issues in using function approximation for reinforcement learning[C] Proceedings of the 1993

Connectionist Models Summer School Hillsdale, NJ. Lawrence Erlbaum. 1993.
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Issues in Q-learning Overestimation

Bounds for Expected Failure of Q-learning
Simple Assumptions

There is a set of goal states;

Positive reward rgoal is only recieved upon entering a goal state;

rgoal = 1;

The state transition function is deterministic.

One necessary condition for the success of Q-learning is that the sequence
of Q-values Q(si , ai ) is monotonically increasing in i :

Q(si , ai ) ≤ Q(si+1, ai+1), for all i ∈ {0, . . . , L− 1} (4)
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Issues in Q-learning Overestimation

Bounds for Expected Failure of Q-learning
Simple Assumptions

Case 1: the learner always overestimates Q-values by γc .

Theorem

If there is maximal, repeated overestimation of magnitude γc along an
optimal path, Q-learning is expected to fail to learn an optimal policy if
γ > 1

1+c .
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Issues in Q-learning Overestimation

Case 2: Assume that Q-learning managed to learn the last L-1 Q-values of
this optimal path correctly.

Q-values are given by iteratively discounting the final reward with the
distance to the goal state, i.e., Q(sL−i , aL−i ) = γ i for
i ∈ {1, . . . , L− 1}.
Correct Q-value Qcorrect(s0, a0) is γL.

In order to maintain monotonicity of Q, we need to make sure that

γL−1 − γL ≥ γc . (5)

Theorem

Under the conditions above, Q-learning is expected to fail if

γL−1 − γL < γc . (6)
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Issues in Q-learning Overestimation

Theorem

Under the conditions above, Q-learning is expected to fail if

ε >
n + 1

n − 1
· (L− 2)L−2

(L− 1)L−1
. (7)
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Issues in Q-learning Double Q-learning

Double Q-learning
Preliminaries

a set of random variables X = {Xi , . . . ,XM} Our interest is that

max
i

E [Xi ] , (8)

which is in the Q-learning update rule.

S = ∪M
i=1Si where Si is the subset contains samples for the variable

Xi and each s ∈ Si is i.i.d.

E [Xi ] = E [µi ] ≈ µi (S)
def
= 1
|Si |
∑

s∈Si
s , where µi is an unbiased

estimate for the value of E [Xi ].

f µi is PDF and Fµi is CDF of Xi .

max
i

E [Xi ] = max
i

∫ ∞
−∞

x f µi (x)dx .
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Issues in Q-learning Double Q-learning

Double Q-learning
Single Estimator

An obvious way to approximate the value in Eq. (8) is

max
i

E [Xi ] = max
i

E [µi ] ≈ max
i
µi (S) . (9)

Assume the maximal estimator maxi µi (S) is distributed as PDF f µmax .

f µmax 6= f µi but f µmax is dependent on f µi .

CDF Fµmax (x)
def
= P(maxi µi ≤ x) =

∏M
i=1 P(µi ≤ x)

def
=
∏M

i=1 F
µ
i (x) .
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Issues in Q-learning Double Q-learning

Double Q-learning
Biased Estimation of E [Xi ]

The value maxi µi (S) is an unbiased estimate for E [maxj µj ].

E [max
i
µi ] =

∫ ∞
−∞

x f µmax (x)

=

∫ ∞
−∞

x
d

dx

M∏
i=1

Fµi (x)dx

=
M∑
j

∫ ∞
−∞

x f µj (x)
M∏

i 6=j

Fµi (x)dx .

(10)

E [maxiµi ] is not the same as maxiE [Xi ].
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Issues in Q-learning Double Q-learning

Double Q-learning
Double Estimators

Two sets of estimators: µA = µA
1 , . . . , µ

A
M , µb = µB

1 , . . . , µ
B
M .

Two subsets of samples: S = SA ∪ SB , SA ∩ SB = ∅

µA
i (S)

def
= 1
|SA

i |
∑

s∈SA
i
s, µB

i (S)
def
= 1
|SB

i |
∑

s∈SB
i
s.

Both µA
i and µB

i are unbiased if we assume proper split on the sample
set S .

MaxA(S)
def
= {j |maxi µ

A
i (S)}.

Since µB
i (S) is an independent, unbiased set of estimators, we have

E [µB
j (S)] = E [Xj ] for all j including j ∈ MaxA. We can pick a∗ such

that µA
a∗

def
= maxi µ

A
i (S). So that

max
i

E [Xi ] = max
i

E [µB
i ] ≈ µB

a∗ . (11)
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Issues in Q-learning Double Q-learning

Double Q-learning
Difference Between Single/Double Estimators

P(j = a∗) =

∫ ∞
−∞

P(µA
j = x)

M∏
i 6=j

P(µA
j < x)dx

def
=

∫ ∞
−∞

f A
j (x)

M∏
i 6=j

FA
i (x)dx

(12)

M∑
j

P(j = a∗)E [µB
j ] =

M∑
j

E [µB
j ]

∫ ∞
−∞

f A
j (x)

M∏
i 6=j

FA
i (x)dx . (13)

Recall Eq. (10) of single estimator that

E [max
i
µi ] =

∫ ∞
−∞

x f µmax (x) =
M∑
j

∫ ∞
−∞

x f µj (x)
M∏

i 6=j

Fµi (x)dx .
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Issues in Q-learning Double Q-learning

Double Q-learning
Algorithm34

3
Hasselt H V. Double Q-learning[C] Advances in Neural Information Processing Systems. 2010: 2613-2621.

4
Van Hasselt H, Guez A, Silver D. Deep Reinforcement Learning with Double Q-Learning[C] AAAI. 2016: 2094-2100.

Kan Ren (SJTU) Value-based Reinforcement Learning Aug. 3 2017 27 / 46



Issues in Q-learning Double Q-learning

Double Q-learning
Performance
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Issues in Q-learning Averaged Q-learning

Averaged Deep Q-Network

Double Q-learning aims to correct the overestimation of natural
Q-learning.

Averaged DQN focus on variance reduction and stabilization.
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Issues in Q-learning Averaged Q-learning

Averaged Deep Q-Network
Revision of DQN5

5
Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015,

518(7540): 529-533.
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Issues in Q-learning Averaged Q-learning

Averaged Deep Q-Network
Algorithm6

6
Anschel O, Baram N, Shimkin N. Averaged-DQN: Variance Reduction and Stabilization for Deep Reinforcement

Learning[C] International Conference on Machine Learning. 2017: 176-185.
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Issues in Q-learning Averaged Q-learning

Averaged Deep Q-Network
Performance
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Issues in Q-learning Averaged Q-learning

Averaged Deep Q-Network
Error Analysis

Let Q(s, a; θi ) be the value function of DQN at iteration i ,

∆i = Q(s, a; θi )− Q∗(s, a)

= Q(s, a; θi )− y i
s,a︸ ︷︷ ︸

Target Apprixmation Error

+ y i
s,a − ŷ i

s,a︸ ︷︷ ︸
Overestimation Error

+ ŷ i
s,a − Q∗(s, a)︸ ︷︷ ︸

OptimalityDifference

.

(14)

Here y i
s,a is the DQN target, and ŷ i

s,a is the true target, such that

y i
s,a = EB

[
r + γmax

a′
Q(s ′, a′; θi i − 1)|s, a

]
,

ŷ i
s,a = EB

[
r + γmax

a′
(ŷ i−1

s′,a′)|s, a
]
.

(15)
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Issues in Q-learning Averaged Q-learning

Averaged Deep Q-Network
Background and Related Work

Define Z i
s,a as TAE (Target Approximation Error) and R i

s,a as
overestimation error.

Z i
s,a = Q(s, a; θi )− y i

s,a ,

R i
s,a = y i

s,a − ŷ i
s,a .

(16)

In Thrun & Schwartz (1993), Z i
s,a is considered as a random variable

uniformly distributed error in [−ε, ε] and

Ez [R i
s,a] = γEz [max

a′
[Z i−1

s′,a′ ]] = γε
n − 1

n + 1
. (17)

In Double Q-learning paper, the author replaces positive bias with a
negative one.
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Issues in Q-learning Averaged Q-learning

Averaged Deep Q-Network
TAE Variance Reduction

Assume that
E [Z i

s,a] = 0, Var [Z i
s,a] = σ2

s ,

for i 6= j ,Cov [Z i
s,a,Z

j
s′,a′ ] = 0.

(18)

We consider a fixed policy for updating the target values, and conveniently
consider a zero reward r = 0 everywhere since it has no effect on variance
calculations.
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Issues in Q-learning Averaged Q-learning

Averaged Deep Q-Network
TAE Variance Reduction (cont.)

Consider M-state unidirectional MDP as

QDQN(s0, a; θi ) = Z i
s0,a + y i

s0,a

= Z i
s0,a + γQ(s1, a; θi−1)

= Z i
s0,a + γ[Z i−1

s1,a + y i−1
s1,a ] = . . . =

= Z i
s0,a + γZ i−1

s1,a + . . .+ γM−1Z
i−(M−1)
sM−1,a

(19)

Since for i 6= j ,Cov [Z i
s,a,Z

j
s′,a′ ] = 0, we have

Var [QDQN(s0, a; θi )] =
M−1∑
m=0

γ2mσ2
sm
. (20)
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Issues in Q-learning Averaged Q-learning

Averaged Deep Q-Network
TAE Variance Reduction (cont.)

For Averaged DQN,

Qi = Zi + γP
1

K

K∑
k=1

Qi−k , (21)

where P ∈ RS×S
+ is the transition probabilities matrix for the given policy.

Recall that Z i
s,a = Q(s, a; θi )− y i

s,a.
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Issues in Q-learning Averaged Q-learning

Averaged Deep Q-Network
Ensemble DQN
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Issues in Q-learning Averaged Q-learning

Averaged Deep Q-Network
Ensemble DQN Variance

For i > M,

QE
i (s0, a) =

M−1∑
m=0

γm 1

K

K∑
k=1

Z k,i−m
sm,a

Var [QE
i (s0, a)] =

M−1∑
m=0

1

K
γ2mσ2

sm

=
1

K
Var [QDQN(s0, a; θi )]

(22)
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Issues in Q-learning Averaged Q-learning

Averaged Deep Q-Network
Averaged DQN Variance

For i > KM,

Var [QA
i (s0, a)] =

M−1∑
m=0

DK ,mγ
2mσ2

sm
, (23)

where DK ,m = 1
N

∑N−1
n=0 |Un/K |2(m+1) and U = (Un)N−1

n=0 denoting a
Discrete Fourier Transform of a rectangle pulse.
Furthermore, DK ,m < 1

K and

Var [QA
i (s0, a)] < Var [QE

i (s0, a)]

=
1

K
Var [QDQN(s0, a; θi )] .

(24)
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Convergence of Tabular TD Sarsa

Convergence of Sarsa(0)
Convergence of Random Iterative Process

Lemma

A random iterative process

∆t+1(x) = (1− αt(x))∆t(x) + αt(x)Ft(x), x ∈ X , t = 0, 1, 2, . . . (25)

converges to zero w.p.1 if the following properties hold:

1. the set of possible states X is finite.

2. 0 ≤ αt(x) ≤ 1,
∑

t αt(x) =∞,
∑

t α
2
t (x) <∞ w .p.1, where the

probability is over the learning rates αt .

3. ‖E [Ft(·)|Pt ]‖W ≤ κ‖∆t‖W + ct , where κ ∈ [0, 1) and ct converges to
zero w.p.1.

4. Var [Ft(x)] ≤ K (1 + ‖∆t‖W )2, where K is some constant.

Here Pt is an increasing sequence of σ-fields that includes the past of the process. In particular we assume that
αt ,∆t , Ft−1 ∈ Pt . The notation ‖ · ‖W refers to some (fixed) weighted maximum norm.
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Convergence of Tabular TD Sarsa

Convergence of Sarsa(0)

Theorem

In finite state-action MDPs, the Qt values computed by the Sarsa(0) rule

Qt+1(st , at) = Qt(st , at) + αt(st , at)[rt + γQt(st+1, at+1)− Qt(st , at)]

= (1− α(st , at))Qt(st , at) + αt(st , at)[rt + γQt(st+1, at+1)] .

converges to Q∗ and the learning policy πt converges to an optimal policy π∗ if
the learning policy is GLIE with these additional conditions are satisfied

1. The Q values are stored in a lookup table.

2. The learning rates satisfy
0 ≤ αt(st , at) ≤ 1,

∑
t αt(st , at) =∞,

∑
t α

2
t (st , at) <∞ and

αt(st , at) = 0 unless (s, a) = (st , at).

3. Var [r(s, a)] <∞ .
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Convergence of Tabular TD Sarsa

Convergence of Sarsa(0)

x
def
= (st , at).

∆t
def
= Qt(s, a)− Q∗(s, a).

So we get

∆t+1(st , at) = Qt+1(st , at)− Q∗(s, a)

= (1− α(st , at))∆t(st , at) + αt(st , at)Ft(st , at).
(26)

where

Ft(st , at) = rt + γmax
a′

Qt(st+1, a
′)− Q∗(st , at)

+ γ

[
Qt(st+1, at+1)−max

a′
Qt(st+1, a

′)

]
def
= rt + γmax

a′
Qt(st+1, a

′)− Q∗(st , at) + Ct(Q)

def
= FQ

t (st , at) + Ct(st , at)

(27)
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Convergence of Tabular TD Q-learning (TBE)
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