User Response Learning for Directly Optimizing Campaign Performance in Display Advertising

Kan Ren¹ Weinan Zhang¹ Yifei Rong³ Haifeng Zhang⁴ Yong Yu¹ Jun Wang²

¹Apex Data and Knowledge Management Lab Shanghai Jiao Tong University

²University College London & MediaGamma Ltd

³YOYI Inc.

⁴Peking University

CIKM 2016

Kan Ren, Weinan Zhang, Yifei Rong , Haifen<mark>User Response Learning for Directly Optimizi</mark>i

CIKM 2016 1 / 52

Outline

- 1) User Response Prediction
 - Goal and Applications
 - State-of-the-art Methods
- Case Study: Real-time Bidding
- Optimize the Response Prediction
 - Problem Setup
 - Optimization for Campaign Performance
 - Expected Utility Model
 - Risk Return Model
 - Realization of Model
 - Links to Previous Work

Experiments

Evaluations

2 / 52

Outline

User Response Prediction

- Goal and Applications
- State-of-the-art Methods
- 2 Case Study: Real-time Bidding
- Optimize the Response Prediction
 - Problem Setup
 - Optimization for Campaign Performance
 - Expected Utility Model
 - Risk Return Model
 - Realization of Model
 - Links to Previous Work
- Experiments
 - Evaluations

3 / 52

★ ∃ >

User Response Prediction

Goal

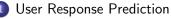
To estimate the probability of user taking some specific actions.

Example

Click-through Rate (CTR): Possibility of user clicking on the specific item. Conversion Rate (CVR): Possibility of user convert an action on the item.

4 / 52

Outline



- Goal and Applications
- State-of-the-art Methods
- 2 Case Study: Real-time Bidding
- Optimize the Response Prediction
 - Problem Setup
 - Optimization for Campaign Performance
 - Expected Utility Model
 - Risk Return Model
 - Realization of Model
 - Links to Previous Work
- Experiments
 - Evaluations

5 / 52

★ ∃ ► ★

State-of-the-art

Regression Model

Logistic Regression (LR)

Estimating Conversion Rate in Display Advertising from Past Performance Data, K.-c Lee et al. KDD 2012

Tree-based Model

Practical Lessons from Predicting Clicks on Ads at Facebook, X. He et al. ADKDD 2014

Factorization Machines

Response prediction using collaborative filtering with hierarchies and side-information, A.K. Menon et al. KDD $2011\,$

6 / 52

- 4 ⊒ →

CIKM 2016

Kan Ren, Weinan Zhang, Yifei Rong , HaifenUser Response Learning for Directly Optimiziu

State-of-the-art

Other Variants

Bayesian Probit Regression

Web-scale Bayesian Click-through Rate Prediction for Sponsored Search Advertising in Microsoft's Bing Search Engine, T. Graepel et al. ICML 2010

Factorization Machine with FTRL

Factorization Machines with Follow-The-Regularized-Leader for CTR prediction in Display Advertising, A.-P. Ta. Big Data 2015

Deep Neural Networks

A Convolutional Click Prediction Model, Q. Liu et al. CIKM 2015 Deep Learning over Multi-field Categorical Data A Case Study on User Response Prediction. W. Zhang et al. ECIR 2016.

7 / 52

CIKM 2016

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Objective Function

Squared Error

$$\mathcal{L}_{SE} = \frac{1}{2}(y - \hat{y})^2, y \in \{0, 1\}, \hat{y} \in [0, 1]$$

Cross Entropy

$$\mathcal{L}_{\textit{CE}} = -y \log \hat{y} - (1-y) \log(1-\hat{y}), y \in \{0,1\}, \hat{y} \in [0,1]$$

8 / 52

A (10) F (10)

э.

CIKM 2016

Kan Ren, Weinan Zhang, Yifei Rong , Haifen User Response Learning for Directly Optimizie

Evaluation Measurements

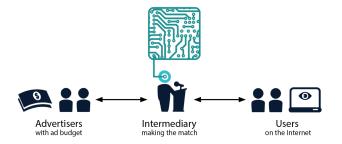
Area under ROC Curve (AUC) Relative Information Gain (Cross Entropy)

Kan Ren, Weinan Zhang, Yifei Rong , Haifen User Response Learning for Directly Optimiziu

CIKM 2016 9 / 52

3 ×

RTB Display Advertising

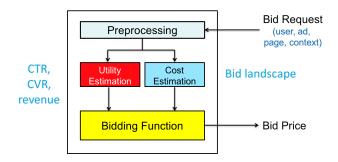


To address the right user with the right message in the right context and at the right price.

10 / 52

< ∃ >

Bidding Strategy



Advertisers try to

buy ad impression opportunities pursuing best returns (profit = gain - cost)

CIKM 2016 11 / 52

★ ∃ >

Problems & Challenges

Isolated Optimization

Models for different components are trained separately.

Blind of Sequential Stages

Impression opportunities of low price with high value and high price with low value have not been appropriately dealt with.

Incomplete Evaluations ¹

Common metrics cannot reflect the true concern of the advertisers. (high AUC does not correspond to high profit)

12 / 52

CIKM 2016

¹Offline Evaluation of Response Prediction in Online Advertising Auctions, O. Chapeller WWW 2015 👒 🛓 🕨

Outline

- User Response Prediction
 - Goal and Applications
 - State-of-the-art Methods
- 2 Case Study: Real-time Bidding
- Optimize the Response Prediction
 - Problem Setup
 - Optimization for Campaign Performance
 - Expected Utility Model
 - Risk Return Model
 - Realization of Model
 - Links to Previous Work
 - Experiments
 - Evaluations

13 / 52

< ∃ >

CIKM 2016

Kan Ren, Weinan Zhang, Yifei Rong , Haifen<mark>User Response Learning for Directly Optimizi</mark>i

Problem Setup

Motivation

To make the user response prediction more precisely accurate considering the context.

Kan Ren, Weinan Zhang, Yifei Rong , Haifen User Response Learning for Directly Optimiziu

CIKM 2016 14 / 52

Problem Setup

Motivation

To make the user response prediction more precisely accurate considering the context.

Example

Combine response learning and bidding strategy, market price modeling altogether.

That is to directly optimize profit for a performance ad campaign, rather than only optimizing discrete user responses.

14 / 52

Outline

- User Response Prediction
 - Goal and Applications
 - State-of-the-art Methods
- 2 Case Study: Real-time Bidding
- Optimize the Response Prediction
 - Problem Setup

• Optimization for Campaign Performance

- Expected Utility Model
- Risk Return Model
- Realization of Model
- Links to Previous Work
- Experiments
 - Evaluations

15 / 52

Notations and descriptions

Notation	Description
У	The true label of user response.
x	The bid request represented by its features.
$\boldsymbol{\theta}$	The parameter of CTR estimation function.
$f_{\theta}(\mathbf{x})$	the CTR estimation function to learn.
$b(f_{\theta}(\mathbf{x}))$	The bid price determined by the estimated CTR,
	<i>b</i> for short.
$R_{\theta}(\cdot)$	The utility function.

16 / 52

I ∃ ►

Market Modeling

Market Price

The second highest price proposed during an RTB auction (2^{nd} price) .

Market Price Distribution (p.d.f.)

 $p_z(z), z \in \mathcal{N}.$

17 / 52

Market Modeling

Market Price

The second highest price proposed during an RTB auction (2^{nd} price) .

Market Price Distribution (p.d.f.)

 $p_z(z), z \in \mathcal{N}.$

Winning Probability when Bidding at price b (c.d.f.)

$$w(b)=\int_0^b p_z(z)dz.$$

(1

17 / 52

CIKM 2016

Kan Ren, Weinan Zhang, Yifei Rong , Haifen<mark>User Response Learning for Directly Optimizi</mark>i

Market Modeling

Market Price

The second highest price proposed during an RTB auction (2^{nd} price) .

Market Price Distribution (p.d.f.)

 $p_z(z), z \in \mathcal{N}.$

Winning Probability when Bidding at price b (c.d.f.)

$$w(b)=\int_0^b p_z(z)dz.$$

Expected Cost under 2nd Price Auction

$$\int_{0}^{b} zp_{z}(z)dz \qquad \int_{0}^{b} zp_{z}(z)dz$$

CIKM 2016

Kan Ren, Weinan Zhang, Yifei Rong , Haifen<mark>User Response Learning for Directly Optimizi</mark>i

Objective Function

Objective Function

$$\boldsymbol{\theta}^* = \arg \max_{\boldsymbol{\theta}} \int_{\boldsymbol{x}} R_{\boldsymbol{\theta}}(\boldsymbol{x}, y; b, v, c, w) p_{\boldsymbol{x}}(\boldsymbol{x}) d\boldsymbol{x}.$$
(3)

$R_{\theta}(\cdot)$ is the Utility Function.

Constant click value v limits the max bid.

We will propose two variants of $R_{\theta}(\cdot)$.

18 / 52

Expected Utility Model

Expected Utility (EU)

$$R_{\theta}^{\mathsf{EU}}(\mathbf{x}, y) = [vy - c(b(f_{\theta}(\mathbf{x})))] \cdot w(b(f_{\theta}(\mathbf{x}))).$$

19 / 52

A

CIKM 2016

- 一司

< ∃ >

(4)

Kan Ren, Weinan Zhang, Yifei Rong , Haifen<mark>User Response Learning for Directly Optimizi</mark>

Objective of EU

The overall expected direct $profit^2$ of all the auctions can be calculated by replacing Eqs. (1) and (2) into Eq. (4) as

$$\sum_{(\mathbf{x},y)\in D} \mathcal{R}_{\theta}^{\mathsf{EU}}(\mathbf{x},y) = \sum_{(\mathbf{x},y)\in D} [vy - c(b(f_{\theta}(\mathbf{x})))] \cdot w(b(f_{\theta}(\mathbf{x})))$$
$$= \sum_{(\mathbf{x},y)\in D} \left[vy - \frac{\int_{0}^{b(f_{\theta}(\mathbf{x}))} z \cdot p_{z}(z)dz}{\int_{0}^{b(f_{\theta}(\mathbf{x}))} p_{z}(z)dz} \right] \cdot \int_{0}^{b(f_{\theta}(\mathbf{x}))} p_{z}(z)dz$$
$$= \sum_{(\mathbf{x},y)\in D} \int_{0}^{b(f_{\theta}(\mathbf{x}))} (vy - z) \cdot p_{z}(z)dz.$$
(5)

CIKM 2016

20 / 52

²O. Chapelle. WWW 2015.

Kan Ren, Weinan Zhang, Yifei Rong , HaifenUser Response Learning for Directly Optimizii

Optimal Parameter

Taking Eq. (5) into Eq. (3) with a regularization term turns our learning problem into convex optimization:

$$\theta^{\mathsf{EU}} = \arg\min_{\theta} - \sum_{(\mathbf{x}, y) \in D} R_{\theta}^{\mathsf{EU}}(\mathbf{x}, y) + \frac{\lambda}{2} \|\theta\|_{2}^{2}$$
(6)
$$= \arg\min_{\theta} \sum_{\mathbf{x}} \int_{0}^{b(f_{\theta}(\mathbf{x}))} (z - vy) \cdot p_{z}(z) dz + \frac{\lambda}{2} \theta^{\mathsf{T}} \theta.$$

where the optimal value of θ is obtained by taking a gradient descent algorithm.

21 / 52

Gradient of EU

The gradient of $R_{\theta}^{\mathsf{EU}}(\mathbf{x}, y)$ with regard to θ is calculated as

$$\frac{\partial R_{\theta}^{\mathsf{EU}}(\mathbf{x}, y)}{\partial \theta} = \underbrace{(b(f_{\theta}(\mathbf{x})) - vy)}_{b(f_{\theta}(\mathbf{x})) - vy} \cdot \underbrace{p_{z}(b(f_{\theta}(\mathbf{x})))}_{p_{z}(b(f_{\theta}(\mathbf{x})))} \cdot \underbrace{\frac{\partial b(f_{\theta}(\mathbf{x}))}{\partial f_{\theta}(\mathbf{x})} \frac{\partial f_{\theta}(\mathbf{x})}{\partial \theta} + \lambda \theta}_{(7)}$$

and we update for each data instance as $\theta \leftarrow \theta - \eta \frac{\partial R_{\theta}^{EU}(\mathbf{x}, y)}{\partial \theta}$ by above chain rule. (SGD)

22 / 52

CIKM 2016

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Kan Ren, Weinan Zhang, Yifei Rong , Haifen User Response Learning for Directly Optimizi

Risk Return Model

Risk Return (RR)

$$R_{\theta}^{\mathsf{RR}}(\boldsymbol{x}, \boldsymbol{y}) = \left(\underbrace{\frac{vy}{z}}_{\mathsf{return}} - \underbrace{\frac{v(1-y)}{v-z}}_{\mathsf{risk}}\right) \cdot w(b(f_{\theta}(\boldsymbol{x}))). \tag{8}$$

Kan Ren, Weinan Zhang, Yifei Rong , HaifenUser Response Learning for Directly Optimizi

CIKM 2016 23 / 52

- 4 ⊒ →

< 一型

Objective of RR

$$\theta^{\text{RR}} = \arg\min_{\theta} - \sum_{(\mathbf{x}, y) \in D} R_{\theta}^{\text{RR}}(\mathbf{x}, y) + \frac{\lambda}{2} \|\theta\|_{2}^{2}$$

$$= \arg\min_{\theta} - \sum_{(\mathbf{x}, y) \in D} \int_{0}^{b(f_{\theta}(\mathbf{x}))} \left(\frac{vy}{z} - \frac{v(1-y)}{v-z}\right) \cdot p_{z}(z) dz$$

$$+ \frac{\lambda}{2} \theta^{T} \theta.$$
(9)

24 / 52

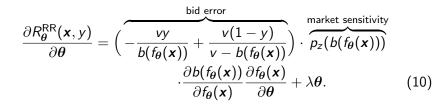
æ

CIKM 2016

イロト イヨト イヨト イヨト

Kan Ren, Weinan Zhang, Yifei Rong , Haifen User Response Learning for Directly Optimizi

Gradient of RR



25 / 52

< ∃ >

CIKM 2016

Kan Ren, Weinan Zhang, Yifei Rong , HaifenUser Response Learning for Directly Optimiziu

Outline

- User Response Prediction
 - Goal and Applications
 - State-of-the-art Methods
- 2 Case Study: Real-time Bidding

Optimize the Response Prediction

- Problem Setup
- Optimization for Campaign Performance
 - Expected Utility Model
 - Risk Return Model

Realization of Model

Links to Previous Work

Experiments

• Evaluations

26 / 52

< ∃ >

Question

Gradient of EU

$$\frac{\partial R_{\theta}^{\mathsf{EU}}(\mathbf{x}, y)}{\partial \theta} = \underbrace{(b(f_{\theta}(\mathbf{x})) - vy)}_{b} \cdot \underbrace{p_{z}(b(f_{\theta}(\mathbf{x})))}_{p_{z}(b(f_{\theta}(\mathbf{x})))} \cdot \frac{\partial b(f_{\theta}(\mathbf{x}))}{\partial f_{\theta}(\mathbf{x})} \frac{\partial f_{\theta}(\mathbf{x})}{\partial \theta} + \lambda \theta.$$

Gradient of RR

$$\frac{\partial R_{\theta}^{\text{RR}}(\boldsymbol{x}, \boldsymbol{y})}{\partial \boldsymbol{\theta}} = \left(\underbrace{-\frac{vy}{b(f_{\theta}(\boldsymbol{x}))} + \frac{v(1-y)}{v - b(f_{\theta}(\boldsymbol{x}))}}_{\boldsymbol{y} - b(f_{\theta}(\boldsymbol{x}))}\right) \cdot \underbrace{\rho_{z}(b(f_{\theta}(\boldsymbol{x})))}_{\boldsymbol{y} - b(f_{\theta}(\boldsymbol{x}))}}_{\boldsymbol{y} - b(f_{\theta}(\boldsymbol{x}))} \frac{\partial f_{\theta}(\boldsymbol{x})}{\partial f_{\theta}(\boldsymbol{x})} + \lambda \boldsymbol{\theta}.$$

Question

Gradient of EU

$$\frac{\partial R_{\theta}^{\mathsf{EU}}(\mathbf{x}, y)}{\partial \theta} = \underbrace{(b(f_{\theta}(\mathbf{x})) - vy)}_{b} \cdot \underbrace{p_{z}(b(f_{\theta}(\mathbf{x})))}_{p_{z}(b(f_{\theta}(\mathbf{x})))} \cdot \frac{\partial b(f_{\theta}(\mathbf{x}))}{\partial f_{\theta}(\mathbf{x})} \frac{\partial f_{\theta}(\mathbf{x})}{\partial \theta} + \lambda \theta.$$

Gradient of RR

$$\frac{\partial R_{\theta}^{\text{RR}}(\boldsymbol{x}, \boldsymbol{y})}{\partial \boldsymbol{\theta}} = \left(\underbrace{-\frac{vy}{b(f_{\theta}(\boldsymbol{x}))} + \frac{v(1-y)}{v - b(f_{\theta}(\boldsymbol{x}))}}_{\boldsymbol{y} - b(f_{\theta}(\boldsymbol{x}))}\right) \cdot \underbrace{\rho_{z}(b(f_{\theta}(\boldsymbol{x})))}_{\boldsymbol{y} - b(f_{\theta}(\boldsymbol{x}))}}_{\boldsymbol{y} - b(f_{\theta}(\boldsymbol{x}))} \frac{\partial f_{\theta}(\boldsymbol{x})}{\partial f_{\theta}(\boldsymbol{x})} + \lambda \boldsymbol{\theta}.$$

Realization of Model

Realization of Model

Response Prediction Model $f_{\theta}(\mathbf{x})$

$$f_{\boldsymbol{\theta}}(\boldsymbol{x}) \equiv \sigma(\boldsymbol{\theta}^{T} \boldsymbol{x}) = \frac{1}{1 + e^{-\boldsymbol{\theta}^{T} \boldsymbol{x}}} .$$
 (11)

Linear Bidding Strategy

$$b(f_{\theta}(\mathbf{x})) \equiv \phi \cdot \mathbf{v} \cdot f_{\theta}(\mathbf{x}), \qquad (12)$$

CIKM 2016

28 / 52

where ϕ is the scaling parameter.

Kan Ren, Weinan Zhang, Yifei Rong , HaifenUser Response Learning for Directly Optimiziu

Linear Gradient

Linear Gradient of EU

$$\frac{\partial R_{\theta}^{\mathsf{EU}}(\boldsymbol{x}, \boldsymbol{y})}{\partial \boldsymbol{\theta}} = \phi v^2 (\phi \sigma(\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x}) - \boldsymbol{y}) \cdot p_z(b(f_{\theta}(\boldsymbol{x}))) \cdot \sigma(\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x})(1 - \sigma(\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x}))\boldsymbol{x} + \lambda \boldsymbol{\theta}.$$
(13)

Linear Gradient of RR

$$\frac{\partial R_{\theta}^{\mathsf{RR}}(\boldsymbol{x}, \boldsymbol{y})}{\partial \boldsymbol{\theta}} = \phi v \left(-\frac{\boldsymbol{y}}{\phi \sigma(\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x})} + \frac{1-\boldsymbol{y}}{1-\phi \sigma(\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x})} \right) \cdot p_{\boldsymbol{z}}(b(f_{\theta}(\boldsymbol{x}))) \cdot \sigma(\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x})(1-\sigma(\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x}))\boldsymbol{x} + \lambda \boldsymbol{\theta}.$$
(14)

Outline

- User Response Prediction
 - Goal and Applications
 - State-of-the-art Methods
- 2 Case Study: Real-time Bidding

Optimize the Response Prediction

- Problem Setup
- Optimization for Campaign Performance
 - Expected Utility Model
 - Risk Return Model
- Realization of Model
- Links to Previous Work
- Experiments
 - Evaluations

30 / 52

< ∃ >

Traditional Logistic Regression

Squared Error LR (SE)

$$\mathcal{L}_{\boldsymbol{\theta}}^{\mathsf{SE}}(\boldsymbol{x}, \boldsymbol{y}) = \frac{1}{2} (\boldsymbol{y} - \boldsymbol{\sigma}(\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x}))^{2},$$

$$\frac{\partial \mathcal{L}_{\boldsymbol{\theta}}^{\mathsf{SE}}(\boldsymbol{x}, \boldsymbol{y})}{\partial \boldsymbol{\theta}} = (\boldsymbol{\sigma}(\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x}) - \boldsymbol{y})\boldsymbol{\sigma}(\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x})(1 - \boldsymbol{\sigma}(\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x}))\boldsymbol{x}.$$
 (15)

Cross Entropy LR (CE)

$$\mathcal{L}_{\theta}^{\mathsf{CE}}(\mathbf{x}, y) = -y \log \sigma(\theta^{\mathsf{T}} \mathbf{x}) - (1 - y) \log(1 - \sigma(\theta^{\mathsf{T}} \mathbf{x})),$$
$$\frac{\partial \mathcal{L}_{\theta}^{\mathsf{CE}}(\mathbf{x}, y)}{\partial \theta} = (\sigma(\theta^{\mathsf{T}} \mathbf{x}) - y) \mathbf{x}.$$
(16)

Discussion: Truthful Bidding Simplification

Simplification: Truthful Bidding, $\phi = 1$

$$b(f_{\boldsymbol{ heta}}(\boldsymbol{x})) = v \cdot f_{\boldsymbol{ heta}}(\boldsymbol{x}).$$

(17)

32 / 52

CIKM 2016

Corresponding Gradient of EU & RR

$$\frac{\partial R_{\theta}^{\mathsf{EU}}(\mathbf{x}, y)}{\partial \theta} = v^2 (\sigma(\theta^T \mathbf{x}) - y) \cdot p_z(b(f_{\theta}(\mathbf{x})))$$
(18)
$$\cdot \sigma(\theta^T \mathbf{x})(1 - \sigma(\theta^T \mathbf{x}))\mathbf{x} + \lambda \theta,$$

$$\frac{\partial R_{\theta}^{\mathsf{RR}}(\mathbf{x}, y)}{\partial \theta} = v(\sigma(\theta^T \mathbf{x}) - y)p_z(b(f_{\theta}(\mathbf{x})))\mathbf{x} + \lambda \theta,$$
(19)

Kan Ren, Weinan Zhang, Yifei Rong , HaifenUser Response Learning for Directly Optimizi

Discussion: Uniform Market Price Distribution Simplification

Simplification: Uniform Market Price Distribution

$$p_z(z) = I. \tag{20}$$

Corresponding Gradient of EU & RR

$$\frac{\partial R_{\theta}^{\mathsf{EU}}(\mathbf{x}, \mathbf{y})}{\partial \theta} = v^2 l(\sigma(\theta^{\mathsf{T}} \mathbf{x}) - \mathbf{y}) \cdot \sigma(\theta^{\mathsf{T}} \mathbf{x})(1 - \sigma(\theta^{\mathsf{T}} \mathbf{x}))\mathbf{x} + \lambda \theta, \quad (21)$$

$$\frac{\partial R_{\boldsymbol{\theta}}^{\mathsf{RR}}(\boldsymbol{x}, \boldsymbol{y})}{\partial \boldsymbol{\theta}} = \nu l(\boldsymbol{\sigma}(\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x}) - \boldsymbol{y})\boldsymbol{x} + \lambda \boldsymbol{\theta}.$$
(22)

Kan Ren, Weinan Zhang, Yifei Rong , HaifenUser Response Learning for Directly Optimiziu

Outline

- User Response Prediction
 - Goal and Applications
 - State-of-the-art Methods
- 2 Case Study: Real-time Bidding
- Optimize the Response Prediction
 - Problem Setup
 - Optimization for Campaign Performance
 - Expected Utility Model
 - Risk Return Model
 - Realization of Model
 - Links to Previous Work

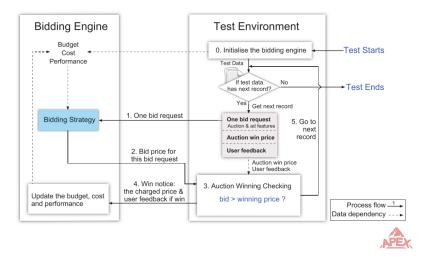
Experiments

Evaluations

34 / 52

< ∃ >

Evaluation Flow



Kan Ren, Weinan Zhang, Yifei Rong , Haifen<mark>User Response Learning for Directly Optimizi</mark>

CIKM 2016 35 / 52

(日) (同) (三) (三)

Evaluation Measures

AUC RMSE

Kan Ren, Weinan Zhang, Yifei Rong , HaifenUser Response Learning for Directly Optimizi

CIKM 2016 36 / 52

Evaluation Measures

AUC RMSE profit = gain - cost ROI = profit / cost CTR = click # / impression # eCPC = cost / click # CPM = $10^3 \times \text{cost}$ / impression #

36 / 52

< ∃ >

Dataset

iPinYou

^a 64.75M bids, 19.5 imps, 14.79 clicks and 16K expense on 9 camps over 10 days.

^ahttp://data.computational-advertising.org.

YOYI

^a 443M imps, 362K clicks and 210K CNY expense over 8 days.

^ahttp://goo.gl/xaao4q.

37 / 52

Compared Settings

User response prediction (truthful bidding function $b(\mathbf{x}) = \mathbf{v} \cdot f(\mathbf{x})$)

- CE Cross entropy loss logistic regression
- SE Squared loss logistic regression
- EU Expected utility model
- RR Risk return model

38 / 52

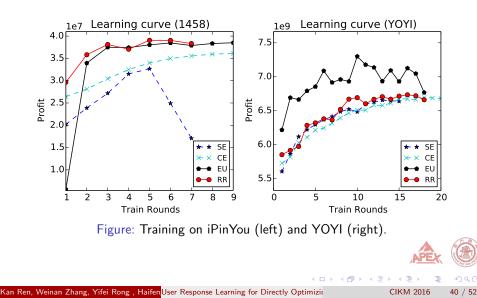
Accuracy of CTR Estimation

Table: Regression performances over campaigns. AUC: the higher, the better. RMSE: the smaller, the better.

	AUC				RMSE (×10 ⁻²)			
iPinYou	SE	CE	EU	RR	SE	CE	EU	RR
1458	.948	.987	.987	.977	3.01	1.94	2.42	2.32
2259	.542	.692	.674	.691	2.01	1.77	1.76	1.79
2261	.490	.569	.622	.619	1.84	1.68	1.71	1.68
2821	.511	.620	.608	.639	2.56	2.43	2.39	2.46
2997	.543	.610	.606	.608	5.98	5.82	5.84	5.82
3358	.863	.974	.970	.980	3.07	2.47	3.32	2.67
3386	.593	.768	.761	.778	2.95	2.84	3.32	2.85
3427	.634	.976	.976	.960	2.78	2.20	2.61	2.34
3476	.575	.957	.954	.950	2.50	2.32	2.39	2.33
Average	.633	.794	.795	.800	2.97	2.61	2.86	2.69
YOYI	.882	.891	.912	.912	11.9	11.7	11.8	11.6

Kan Ren, Weinan Zhang, Yifei Rong , HaifenUser Response Learning for Directly Optimizi

Learning Curve



Campaign Profit Evaluation (baselines)

	$profit(\times 10^7)$		R	DI
iPinYou	SE	CE	SE	CE
1458	3.2	3.6	4.2	6.6
2259	-0.32	0.40	-0.080	0.18
2261	0.29	0.63	0.26	0.40
2821	0.11	0.08	0.21	0.023
2997	0.11	0.14	0.42	0.71
3358	1.76	2.4	5.4	5.2
3386	0.51	1.6	0.16	1.2
3427	0.33	2.9	0.11	3.4
3476	0.65	3.1	0.36	3.5
Average	0.74	1.7	1.2	2.3
YOYI	665.6	669.5	1.8	1.9

Table: Direct campaign profit over baselines.

Kan Ren, Weinan Zhang, Yifei Rong , HaifenUser Response Learning for Directly Optimizir

CIKM 2016 41 / 52

Image: 1

Campaign Profit Evaluation (baselines)

Table: Campaign profit improvement over baseline CE.

	Profit	t gain	ROI gain		
iPinYou	EU	RR	EU	RR	
1458	7.10%	9.00%	233%	267%	
2259	81.6%	99.3%	233%	472%	
2261	26.3%	31.1%	44.4%	91.2%	
2821	573%	615%	1334%	943%	
2997	5.00%	0.700%	-3.60%	-11.4%	
3358	1.70%	6.70%	77.1%	77.7%	
3386	-1.20%	2.50%	20.6%	58.3%	
3427	5.50%	8.70%	52.0%	175%	
3476	4.20%	8.60%	16.0%	91.1%	
YOYI	9.04%	0.600%	14.8%	2.11%	
Average	+71.2%	+78.2%	+202%	+217%	

4 A N

Overall Statistics

	CTR (×10 ⁻⁴)				eCPC			
iPinYou	SE	CE	EU	RR	SE	CE	EU	RR
1458	34	33	59	190	17	11	4.3	3.4
2259	3.3	3.6	3.7	5.8	303	235	4.5	136
2259	2.4	2.7	3.0	2.8	234	235	188	168
2821	2.4	2.7 5.9	3.0 4.8	2.0 7.0	116	137	100	112
2021	5.5 31	5.9 25	4.0 26	27	9.8	8.2	8.3	8.6
	-							
3358	51	41	69	61	18	19	12	12
3386	7.8	11	13	15	90	48	43	36
3427	7.2	25	29	72.8	98	25	17.3	10
3476	6.4	16	17	33.1	111	34	30	20
Average	16	18	25	46	110	81	64	57
YOYI	16	18	26	24	12.9	12.4	11.3	12
	CPM				Win Rate			
iPinYou	SE	CE	EU	RR	SE	CE	EU	RR
1458	57	37	25	65	0.22	0.24	0.13	.041
2259	100	84	64	78	0.89	0.63	0.44	0.24
2261	57	56	56	46	0.55	0.81	0.71	0.67
2821	63	80	50	78	0.12	0.63	0.48	0.45
2997	30	20	21	22	0.55	0.63	0.65	0.63
3358	92	77	80	70	0.11	0.20	0.11	0.13
3386	71	54	55	55	0.82	0.45	0.36	0.29
3427	70	60	49	75	0.75	0.26	0.22	.082
3476	71	55	50	65	0.49	0.31	0.31	0.15
A	68	58	50	62	0.50	0.46	0.38	0.30
Average	00							

Kan Ren, Weinan Zhang, Yifei Rong , Haifen<mark>User Response Learning for Directly Optimizi</mark>i

. ⊒ →

<u>▲日> ▲間> ▲目> ▲</u>

Bidding Analysis

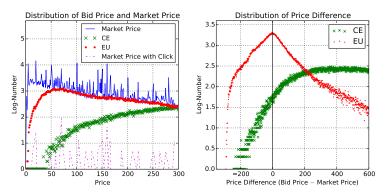
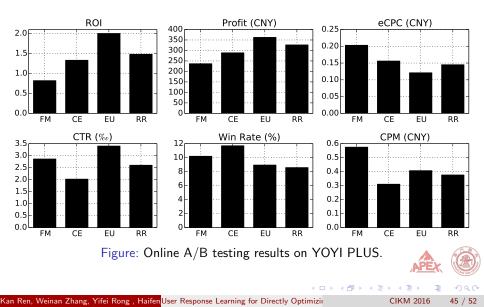


Figure: Analysis of bid price and market price distribution (iPinYou campaign 2259)

CIKM 2016

44 / 52

Online A/B Testing



Question

What if we optimize the total *Utility* w.r.t. the bidding function $b(\cdot)$? What if considering the budget constraints?

46 / 52

Question

What if we optimize the total *Utility* w.r.t. the bidding function $b(\cdot)$? What if considering the budget constraints?

Example

$$b^* = \arg \max_{b} \int_{\mathbf{x}} R_{\theta}(\mathbf{x}, y; b, v, c, w) p_{\mathbf{x}}(\mathbf{x}) d\mathbf{x}, \qquad (23)$$

s.t.
$$\int_{\mathbf{x}} c(\mathbf{x}, y; b, w) p_{\mathbf{x}}(\mathbf{x}) d\mathbf{x} = B. \qquad (24)$$

46 / 52

CIKM 2016

47 / 52

EM-fashion Optimization for $f_{\theta}(x) \& b(r)$

Input: Training set *D*, learning rate α , total budget *B* **Output:** Optimal $b(\cdot)$ and $f_{\theta}(\cdot)$

- 1: Initially set parameter $\pmb{\theta}$ and μ
- 2: while not converged do
- 3: (E-Step)
- 4: for each sample $(x, y) \in D$ do
- 5: Calculate the gradient via Eq. (13) or (14)
- 6: Optimize θ with gradient descent
- 7: end for
- 8: (M-Step)
- 9: Update bidding function $b(\cdot)$ via solving Eq. (28)
- 10: end while

Summary

Context (market price distribution and bid utility) contribute to response prediction.

We proposed:

A novel market aware CTR estimation model;

Discussion about the relation between our proposed model and the traditional learning models;

A new dataset consisting over 87GB bidding logs for computational advertising research;

A jointly optimization model for both $f(\mathbf{x})$ and $b(\cdot)$.

The newly proposed model can largely save budgets and earn more profits.

48 / 52

Derivation for Optimal Bidding Function

Once we fixed $f_{\theta}(\mathbf{x})$, with the auction volume T and campaign budget B, we optimize ϕ in Eq. (12) as

$$\arg \max_{\phi} T \int_{r} \int_{0}^{\phi vr} (vr - z) p_{z}(z) dz \cdot p_{r}(r) dr$$

s.t.
$$T \int_{r} \int_{0}^{\phi vr} z p_{z}(z) dz \cdot p_{r}(r) dr = B,$$
 (25)

where to simplify our notation, we substitute $f_{\theta}(\mathbf{x})$ with its predicted CTR variable r. The Lagrangian $\mathcal{L}(\phi, \mu) =$

$$T\int_{r}\int_{0}^{\phi vr} \left[vr - (\mu+1)z\right] p_{z}(z)dz \cdot p_{r}(r)dr + \mu B, \qquad (26)$$

where μ is the Lagrangian multiplier. Taking the derivative equal to zero, we get that

$$\frac{\partial \mathcal{L}(\phi, \mu)}{\partial \phi} = 0 \Rightarrow \phi = \frac{1}{\mu + 1}.$$

CIKM 2016

49 / 52

Kan Ren, Weinan Zhang, Yifei Rong , Haifen<mark>User Response Learning for Directly Optimizi</mark>i

Solve μ

To solve μ , we take the Lagrangian derivative w.r.t. to μ ant let it be zero, which obtains the constaint equation

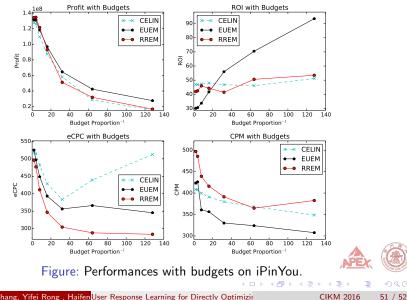
$$T\int_{r}\int_{0}^{\frac{vr}{1+\mu}}zp_{z}(z)dz \ p_{r}(r)dr=B.$$
(28)

50 / 52

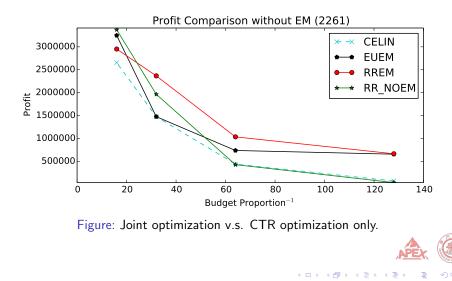
CIKM 2016

Kan Ren, Weinan Zhang, Yifei Rong , HaifenUser Response Learning for Directly Optimizi

Jointly Optimization Results



Effectiveness of Jointly Optimization



CIKM 2016 52 / 52