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User Response Prediction Goal and Applications

User Response Prediction

Goal

To estimate the probability of user taking some specific actions.

Example

Click-through Rate (CTR): Possibility of user clicking on the specific item.
Conversion Rate (CVR): Possibility of user convert an action on the item.
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User Response Prediction State-of-the-art Methods

State-of-the-art
Regression Model

Logistic Regression (LR)
Estimating Conversion Rate in Display Advertising from Past Performance Data, K.-c Lee et al. KDD 2012

Tree-based Model
Practical Lessons from Predicting Clicks on Ads at Facebook, X. He et al. ADKDD 2014

Factorization Machines
Response prediction using collaborative filtering with hierarchies and side-information, A.K. Menon et al. KDD
2011
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User Response Prediction State-of-the-art Methods

State-of-the-art
Other Variants

Bayesian Probit Regression
Web-scale Bayesian Click-through Rate Prediction for Sponsored Search Advertising in Microsoft’s Bing Search
Engine, T. Graepel et al. ICML 2010

Factorization Machine with FTRL
Factorization Machines with Follow-The-Regularized-Leader for CTR prediction in Display Advertising, A.-P. Ta.
Big Data 2015

Deep Neural Networks
A Convolutional Click Prediction Model, Q. Liu et al. CIKM 2015
Deep Learning over Multi-field Categorical Data A Case Study on User Response Prediction. W. Zhang et al.
ECIR 2016.
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User Response Prediction Objective Function

Objective Function

Squared Error

LSE =
1

2
(y − ŷ)2, y ∈ {0, 1}, ŷ ∈ [0, 1]

Cross Entropy

LCE = −y log ŷ − (1− y) log(1− ŷ), y ∈ {0, 1}, ŷ ∈ [0, 1]

Kan Ren, Weinan Zhang, Yifei Rong , Haifeng Zhang, Yong Yu, Jun Wang (Universities of Somewhere and Elsewhere)User Response Learning for Directly Optimizing Campaign Performance in Display AdvertisingCIKM 2016 8 / 52



User Response Prediction Evaluation Measurements

Evaluation Measurements

Area under ROC Curve (AUC)

Relative Information Gain (Cross Entropy)

Kan Ren, Weinan Zhang, Yifei Rong , Haifeng Zhang, Yong Yu, Jun Wang (Universities of Somewhere and Elsewhere)User Response Learning for Directly Optimizing Campaign Performance in Display AdvertisingCIKM 2016 9 / 52



Case Study: Real-time Bidding

RTB Display Advertising

To address the right user with the right message in the right
context and at the right price.
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Case Study: Real-time Bidding

Bidding Strategy

Advertisers try to

buy ad impression opportunities
pursuing best returns (profit = gain - cost)
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Case Study: Real-time Bidding Problems and Challenges

Problems & Challenges

Isolated Optimization

Models for different components are trained separately.

Blind of Sequential Stages

Impression opportunities of low price with high value and high
price with low value have not been appropriately dealt with.

Incomplete Evaluations 1

Common metrics cannot reflect the true concern of the
advertisers. (high AUC does not correspond to high profit)

1
Offline Evaluation of Response Prediction in Online Advertising Auctions, O. Chapelle. WWW 2015
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Optimize the Response Prediction Problem Setup

Problem Setup

Motivation

To make the user response prediction more precisely accurate considering
the context.

Example

Combine response learning and bidding strategy, market price modeling
altogether.
That is to directly optimize profit for a performance ad campaign, rather
than only optimizing discrete user responses.
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Optimize the Response Prediction Optimization for Campaign Performance
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Optimize the Response Prediction Optimization for Campaign Performance

Notations and descriptions

Notation Description

y The true label of user response.
x The bid request represented by its features.
θ The parameter of CTR estimation function.

fθ(x) the CTR estimation function to learn.
b(fθ(x)) The bid price determined by the estimated CTR,

b for short.
Rθ(·) The utility function.
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Optimize the Response Prediction Optimization for Campaign Performance

Market Modeling

Market Price

The second highest price proposed during an RTB auction (2nd price).

Market Price Distribution (p.d.f.)

pz(z), z ∈ N .

Winning Probability when Bidding at price b (c.d.f.)

w(b) =

∫ b

0
pz(z)dz . (1)

Expected Cost under 2nd Price Auction

c(b) =

∫ b
0 zpz(z)dz

w(b)
=

∫ b
0 zpz(z)dz∫ b
0 pz(z)dz

. (2)
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Optimize the Response Prediction Optimization for Campaign Performance

Objective Function

Objective Function

θ∗ = arg max
θ

∫
x
Rθ(x , y ; b, v , c ,w)px(x)dx . (3)

Rθ(·) is the Utility Function.

Constant click value v limits the max bid.

We will propose two variants of Rθ(·).
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Optimize the Response Prediction Optimization for Campaign Performance

Expected Utility Model

Expected Utility (EU)

REU
θ (x , y) = [vy − c(b(fθ(x)))] · w(b(fθ(x))). (4)
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Optimize the Response Prediction Optimization for Campaign Performance

Objective of EU

The overall expected direct profit2 of all the auctions can be calculated by
replacing Eqs. (1) and (2) into Eq. (4) as∑

(x ,y)∈D

REU
θ (x , y) =

∑
(x ,y)∈D

[vy − c(b(fθ(x)))] · w(b(fθ(x)))

=
∑

(x ,y)∈D

[
vy −

∫ b(fθ(x))
0 z · pz(z)dz∫ b(fθ(x))

0 pz(z)dz

]
·
∫ b(fθ(x))

0
pz(z)dz

=
∑

(x ,y)∈D

∫ b(fθ(x))

0
(vy − z) · pz(z)dz . (5)

2O. Chapelle. WWW 2015.
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Optimize the Response Prediction Optimization for Campaign Performance

Optimal Parameter

Taking Eq. (5) into Eq. (3) with a regularization term turns our learning
problem into convex optimization:

θEU = arg min
θ
−

∑
(x ,y)∈D

REU
θ (x , y) +

λ

2
‖θ‖2

2 (6)

= arg min
θ

∑
x

∫ b(fθ(x))

0
(z − vy) · pz(z)dz +

λ

2
θTθ.

where the optimal value of θ is obtained by taking a gradient descent
algorithm.
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Optimize the Response Prediction Optimization for Campaign Performance

Gradient of EU

The gradient of REU
θ (x , y) with regard to θ is calculated as

∂REU
θ (x , y)

∂θ
= (

bid error︷ ︸︸ ︷
b(fθ(x))− vy) ·

market sensitivity︷ ︸︸ ︷
pz(b(fθ(x))) ·

∂b(fθ(x))

∂fθ(x)

∂fθ(x)

∂θ
+ λθ.

(7)

and we update for each data instance as θ ← θ − η ∂R
EU
θ (x ,y)
∂θ by above

chain rule. (SGD)
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Optimize the Response Prediction Optimization for Campaign Performance

Risk Return Model

Risk Return (RR)

RRR
θ (x , y) =

( vy

z︸︷︷︸
return

− v(1− y)

v − z︸ ︷︷ ︸
risk

)
· w(b(fθ(x))). (8)
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Optimize the Response Prediction Optimization for Campaign Performance

Objective of RR

θRR = arg min
θ
−

∑
(x ,y)∈D

RRR
θ (x , y) +

λ

2
‖θ‖2

2

= arg min
θ
−

∑
(x ,y)∈D

∫ b(fθ(x))

0

(vy
z
− v(1− y)

v − z

)
· pz(z)dz

+
λ

2
θTθ. (9)
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Optimize the Response Prediction Optimization for Campaign Performance

Gradient of RR

∂RRR
θ (x , y)

∂θ
=
( bid error︷ ︸︸ ︷
− vy

b(fθ(x))
+

v(1− y)

v − b(fθ(x))

)
·

market sensitivity︷ ︸︸ ︷
pz(b(fθ(x)))

·∂b(fθ(x))

∂fθ(x)

∂fθ(x)

∂θ
+ λθ. (10)
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Optimize the Response Prediction Realization of Model
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Optimize the Response Prediction Realization of Model

Question

Gradient of EU

∂REU
θ (x , y)

∂θ
= (

bid error︷ ︸︸ ︷
b(fθ(x))− vy) ·

market sensitivity︷ ︸︸ ︷
pz(b(fθ(x))) ·∂b(fθ(x))

∂fθ(x)

∂fθ(x)

∂θ
+ λθ.

Gradient of RR

∂RRR
θ (x , y)

∂θ
=
( bid error︷ ︸︸ ︷
− vy

b(fθ(x))
+

v(1− y)

v − b(fθ(x))

)
·

market sensitivity︷ ︸︸ ︷
pz(b(fθ(x)))

·∂b(fθ(x))

∂fθ(x)

∂fθ(x)

∂θ
+ λθ.

fθ(x)? b(fθ(x))? pz(z)?
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Optimize the Response Prediction Realization of Model

Realization of Model

Response Prediction Model fθ(x)

fθ(x) ≡ σ(θTx) =
1

1 + e−θT x
. (11)

Linear Bidding Strategy

b(fθ(x)) ≡ φ · v · fθ(x), (12)

where φ is the scaling parameter.
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Optimize the Response Prediction Realization of Model

Linear Gradient

Linear Gradient of EU

∂REU
θ (x , y)

∂θ
=φv2(φσ(θTx)− y) · pz(b(fθ(x))) · (13)

σ(θTx)(1− σ(θTx))x + λθ.

Linear Gradient of RR

∂RRR
θ (x , y)

∂θ
=φv

(
− y

φσ(θTx)
+

1− y

1− φσ(θTx)

)
· (14)

pz(b(fθ(x))) · σ(θTx)(1− σ(θTx))x + λθ.
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Optimize the Response Prediction Links to Previous Work
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Optimize the Response Prediction Links to Previous Work

Traditional Logistic Regression

Squared Error LR (SE)

LSE
θ (x , y) =

1

2
(y − σ(θTx))2,

∂LSE
θ (x , y)

∂θ
= (σ(θTx)− y)σ(θTx)(1− σ(θTx))x . (15)

Cross Entropy LR (CE)

LCE
θ (x , y) = −y log σ(θTx)− (1− y) log(1− σ(θTx)),

∂LCE
θ (x , y)

∂θ
= (σ(θTx)− y)x . (16)
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Optimize the Response Prediction Links to Previous Work

Discussion: Truthful Bidding Simplification

Simplification: Truthful Bidding, φ = 1

b(fθ(x)) = v · fθ(x). (17)

Corresponding Gradient of EU & RR

∂REU
θ (x , y)

∂θ
= v2(σ(θTx)− y) · pz(b(fθ(x))) (18)

· σ(θTx)(1− σ(θTx))x + λθ,

∂RRR
θ (x , y)

∂θ
= v(σ(θTx)− y)pz(b(fθ(x)))x + λθ, (19)

EU & RR have one more component (market sensitivity) than SE & CE,
respectively!
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Optimize the Response Prediction Links to Previous Work

Discussion: Uniform Market Price Distribution
Simplification

Simplification: Uniform Market Price Distribution

pz(z) = l . (20)

Corresponding Gradient of EU & RR

∂REU
θ (x , y)

∂θ
= v2l(σ(θTx)− y) · σ(θTx)(1− σ(θTx))x + λθ, (21)

∂RRR
θ (x , y)

∂θ
= vl(σ(θTx)− y)x + λθ. (22)

EU & RR have totally degenerated to SE & CE!
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Experiments Evaluations
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Experiments Evaluations

Evaluation Flow
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Experiments Evaluations

Evaluation Measures

AUC

RMSE

profit = gain - cost

ROI = profit / cost

CTR = click # / impression #

eCPC = cost / click #

CPM = 103× cost / impression #
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Experiments Evaluations

Dataset

iPinYou
a 64.75M bids, 19.5 imps, 14.79 clicks and 16K expense on 9 camps over
10 days.

ahttp://data.computational-advertising.org.

YOYI
a 443M imps, 362K clicks and 210K CNY expense over 8 days.

ahttp://goo.gl/xaao4q.
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Experiments Evaluations

Compared Settings

User response prediction (truthful bidding function b(x) = v · f (x))

CE - Cross entropy loss logistic regression
SE - Squared loss logistic regression
EU - Expected utility model
RR - Risk return model
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Experiments Evaluations

Accuracy of CTR Estimation

Table: Regression performances over campaigns. AUC: the higher, the better.
RMSE: the smaller, the better.

AUC RMSE (×10−2)
iPinYou SE CE EU RR SE CE EU RR

1458 .948 .987 .987 .977 3.01 1.94 2.42 2.32
2259 .542 .692 .674 .691 2.01 1.77 1.76 1.79
2261 .490 .569 .622 .619 1.84 1.68 1.71 1.68
2821 .511 .620 .608 .639 2.56 2.43 2.39 2.46
2997 .543 .610 .606 .608 5.98 5.82 5.84 5.82
3358 .863 .974 .970 .980 3.07 2.47 3.32 2.67
3386 .593 .768 .761 .778 2.95 2.84 3.32 2.85
3427 .634 .976 .976 .960 2.78 2.20 2.61 2.34
3476 .575 .957 .954 .950 2.50 2.32 2.39 2.33

Average .633 .794 .795 .800 2.97 2.61 2.86 2.69

YOYI .882 .891 .912 .912 11.9 11.7 11.8 11.6
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Experiments Evaluations

Learning Curve
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Figure: Training on iPinYou (left) and YOYI (right).
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Experiments Evaluations

Campaign Profit Evaluation (baselines)

Table: Direct campaign profit over baselines.

profit(×107) ROI
iPinYou SE CE SE CE

1458 3.2 3.6 4.2 6.6
2259 -0.32 0.40 -0.080 0.18
2261 0.29 0.63 0.26 0.40
2821 0.11 0.08 0.21 0.023
2997 0.11 0.14 0.42 0.71
3358 1.76 2.4 5.4 5.2
3386 0.51 1.6 0.16 1.2
3427 0.33 2.9 0.11 3.4
3476 0.65 3.1 0.36 3.5

Average 0.74 1.7 1.2 2.3

YOYI 665.6 669.5 1.8 1.9
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Experiments Evaluations

Campaign Profit Evaluation (baselines)

Table: Campaign profit improvement over baseline CE.

Profit gain ROI gain
iPinYou EU RR EU RR

1458 7.10% 9.00% 233% 267%
2259 81.6% 99.3% 233% 472%
2261 26.3% 31.1% 44.4% 91.2%
2821 573% 615% 1334% 943%
2997 5.00% 0.700% -3.60% -11.4%
3358 1.70% 6.70% 77.1% 77.7%
3386 -1.20% 2.50% 20.6% 58.3%
3427 5.50% 8.70% 52.0% 175%
3476 4.20% 8.60% 16.0% 91.1%
YOYI 9.04% 0.600% 14.8% 2.11%

Average +71.2% +78.2% +202% +217%
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Experiments Evaluations

Overall Statistics

CTR (×10−4) eCPC
iPinYou SE CE EU RR SE CE EU RR

1458 34 33 59 190 17 11 4.3 3.4
2259 3.3 3.6 3.7 5.8 303 235 172 136
2261 2.4 2.7 3.0 2.8 234 212 188 168
2821 5.5 5.9 4.8 7.0 116 137 105 112
2997 31 25 26 27 9.8 8.2 8.3 8.6
3358 51 41 69 61 18 19 12 12
3386 7.8 11 13 15 90 48 43 36
3427 7.2 25 29 72.8 98 25 17.3 10
3476 6.4 16 17 33.1 111 34 30 20

Average 16 18 25 46 110 81 64 57
YOYI 16 18 26 24 12.9 12.4 11.3 12

CPM Win Rate
iPinYou SE CE EU RR SE CE EU RR

1458 57 37 25 65 0.22 0.24 0.13 .041
2259 100 84 64 78 0.89 0.63 0.44 0.24
2261 57 56 56 46 0.55 0.81 0.71 0.67
2821 63 80 50 78 0.12 0.63 0.48 0.45
2997 30 20 21 22 0.55 0.63 0.65 0.63
3358 92 77 80 70 0.11 0.20 0.11 0.13
3386 71 54 55 55 0.82 0.45 0.36 0.29
3427 70 60 49 75 0.75 0.26 0.22 .082
3476 71 55 50 65 0.49 0.31 0.31 0.15

Average 68 58 50 62 0.50 0.46 0.38 0.30

YOYI 20 23 29 30 0.36 0.30 0.22 0.22
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Experiments Evaluations

Bidding Analysis
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Figure: Analysis of bid price and market price distribution (iPinYou campaign
2259)
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Experiments Evaluations

Online A/B Testing
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Figure: Online A/B testing results on YOYI PLUS.
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Optimization for Bidding Function

Question

What if we optimize the total Utility w.r.t. the bidding function b(·)?

What if considering the budget constraints?

Example

b∗ = arg max
b

∫
x
Rθ(x , y ; b, v , c,w)px(x)dx , (23)

s.t.

∫
x
c(x , y ; b,w)px(x)dx = B. (24)
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Optimization for Bidding Function Jointly Optimization

EM-fashion Optimization for fθ(x) & b(r)

Input: Training set D, learning rate α, total budget B
Output: Optimal b(·) and fθ(·)
1: Initially set parameter θ and µ
2: while not converged do
3: (E-Step)
4: for each sample (x , y) ∈ D do
5: Calculate the gradient via Eq. (13) or (14)
6: Optimize θ with gradient descent
7: end for
8: (M-Step)
9: Update bidding function b(·) via solving Eq. (28)

10: end while
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Summary

Summary

Context (market price distribution and bid utility) contribute to
response prediction.

We proposed:

A novel market aware CTR estimation model;
Discussion about the relation between our proposed model and
the traditional learning models;
A new dataset consisting over 87GB bidding logs for
computational advertising research;
A jointly optimization model for both f (x) and b(·).

The newly proposed model can largely save budgets and earn more
profits.
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Summary

Derivation for Optimal Bidding Function

Once we fixed fθ(x), with the auction volume T and campaign budget B,
we optimize φ in Eq. (12) as

arg max
φ

T

∫
r

∫ φvr

0
(vr − z)pz(z)dz · pr (r)dr

s.t. T

∫
r

∫ φvr

0
zpz(z)dz · pr (r)dr = B,

(25)

where to simplify our notation, we substitute fθ(x) with its predicted CTR
variable r . The Lagrangian L(φ, µ) =

T

∫
r

∫ φvr

0
[vr − (µ+ 1)z ] pz(z)dz · pr (r)dr + µB, (26)

where µ is the Lagrangian multiplier. Taking the derivative equal to zero,
we get that

∂L(φ, µ)

∂φ
= 0 ⇒ φ =

1

µ+ 1
. (27)
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Summary

Solve µ

To solve µ, we take the Lagrangian derivative w.r.t. to µ ant let it be
zero, which obtains the constaint equation

T

∫
r

∫ vr
1+µ

0
zpz(z)dz pr (r)dr = B. (28)
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Summary

Jointly Optimization Results
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Figure: Performances with budgets on iPinYou.
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Summary

Effectiveness of Jointly Optimization
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Figure: Joint optimization v.s. CTR optimization only.
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