Introduction to Survival Analysis

Kan Ren

Apex Data and Knowledge Management Lab Shanghai Jiao Tong University

Seminar Tutorial at Apex Lab

Kan Ren (Shanghai Jiao Tong University)

Introduction to Survival Analysis

Seminar Tutorial at Apex Lab 1 / 32

Outline

Background

- Probability
- Censored Data
- Challenges

Methodology

- Non-parametric Models
 - Kaplan Meier Estimator
 - Survival Tree
- Parametric Model
 - Cox Hazard Proportional Model
 - Deep Survival Analysis

Evaluation

-

Outline

Background

- Probability
- Censored Data
- Challenges

Methodology

- Non-parametric Models
 - Kaplan Meier Estimator
 - Survival Tree
- Parametric Model
 - Cox Hazard Proportional Model
 - Deep Survival Analysis

Evaluation

・ 何 ト ・ ヨ ト ・ ヨ ト

Probability

Probability

Probability Density Function (P.D.F.):

$$p_t(t) = Pr(T = t) . \tag{1}$$

Cumulative distribution function (C.D.F.):

$$w_t(t) = Pr(T < t) = \int_0^t p_t(v) dv$$
 . (2)

Kan Ren (Shanghai Jiao Tong University)

・ 何 ト ・ ヨ ト ・ ヨ ト

Outline

Background

- Probability
- Censored Data
- Challenges

- Non-parametric Models
 - Kaplan Meier Estimator
 - Survival Tree
- Parametric Model
 - Cox Hazard Proportional Model
 - Deep Survival Analysis

- (四) - (三) - (三)

Censored Data

Censored Data

Right Censored Data

The event happens after the observation time.

• *E*: Event; *t*_{obsv}: The observe time;

•
$$\{(\mathbf{x}, t_{obsv}, e = \mathsf{True}/\mathsf{False})\};$$

• $\{(x, T_E)\}, T_E$ is the event happening log.

Example

- Patient's survival time.
- The true winning price of a bidding auction.
- The next visit time of the user.

Outline

1) Ba

- Background
- Probability
- Censored Data
- Challenges
- 2 Methodology
 - Non-parametric Models
 - Kaplan Meier Estimator
 - Survival Tree
 - Parametric Model
 - Cox Hazard Proportional Model
 - Deep Survival Analysis

Evaluation

- (四) - (三) - (三)

Challenges

Challenges

Right Censorship

- Partially data usage: discard large data for learning.
- Right Censorship: only know that the event happening time is greater than the observing time window.
- Evaluation: proper evaluation metric is needed.

→ 3 → 4 3

Modeling Right Censored Data in Display Ads

Losing and Winning in 2nd-price Auction

Modeling Right Censored Data

Right Censored

Right Censorship

As in 2nd price auction, if you *lose*, you only know that the *market price* is higher than your bidding price, which result in *right censorship*.

Outline

Background

- Probability
- Censored Data
- Challenges

Methodology

Non-parametric Models

- Kaplan Meier Estimator
- Survival Tree
- Parametric Model
 - Cox Hazard Proportional Model
 - Deep Survival Analysis

Evaluation

Kaplan Meier Estimator

Preliminaries

- $S(t) = Pr(t < T_E)$: Survival rate
- F(t) = 1 S(t): Failing rate.

Algorithm

The estimator for an individual is given by

$$S(t) = \prod_{i:t_i \le t} \left(1 - \frac{d_i}{n_i} \right) , \qquad (3)$$

where d_i is the number of events and n_i is the total individuals at risk at time *i*.

Kan Ren (Shanghai Jiao Tong University)

→ 3 → 4 3

APEX

Survival Tree with Kaplan Meier Methods

Cons of KM

- Corse grained, the same for all individuals.
- Statistcal method, cannot apply personalized forecasting.

Survival Tree with Kaplan Meier Methods

Cons of KM

- Corse grained, the same for all individuals.
- Statistcal method, cannot apply personalized forecasting.

Question

How to apply an appropriate *clustering* method for one individual?

Tree-based Mapping

Goal

Given the auction feature x, forecast the market price distribution $p_x(z)^a$.

^aYuchen Wang, Kan Ren, Weinan Zhang, Yong Yu. Functional Bid Landscape Forecasting for Display Advertising. ECML-PKDD, 2016.

Tree-based Mapping

Methodology

Node Splitting

...

Kan Ren (Shanghai Jiao Tong University)

Introduction to Survival Analysis

Seminar Tutorial at Apex Lab

Node Splitting KLD and Clustering

Kullback-Leibler Divergence (KLD)

A measure of the difference between two probability distributions P and Q.

Kan Ren (Shanghai Jiao Tong University)

Introduction to Survival Analysis

Seminar Tutorial at Apex Lab 17 / 32

Node Splitting KLD and Clustering

Kullback-Leibler Divergence (KLD)

A measure of the difference between two probability distributions P and Q.

Node Splitting (one step)

Divide all the category (including in this node) values into two sets, maximizing KLD between the resulted two sets.

Kan Ren (Shanghai Jiao Tong University)

Introduction to Survival Analysis

Seminar Tutorial at Apex Lab 17 / 32

Node Splitting KLD and Clustering

Kullback-Leibler Divergence (KLD)

A measure of the difference between two probability distributions P and Q.

Node Splitting (one step)

Divide all the category (including in this node) values into two sets, maximizing KLD between the resulted two sets.

Algorithm

Using K-Means Clustering according to KLD values.

Kan Ren (Shanghai Jiao Tong University)

Introduction to Survival Analysis

Seminar Tutorial at Apex Lab

★ ∃ ▶ ★

Node Splitting KLD and Clustering

Kan Ren (Shanghai Jiao Tong University)

Introduction to Survival Analysis

Seminar Tutorial at Apex Lab

Handling Censorship

Survival Model

- For winning auctions: We have the true market price value.
- For lost auctions: We only know our proposed bid price and know that the true market price is higher than that.

Intuition

Most related works focus only on the winning auctions without considering the lost auction, which contains the information to infer the true distribution.

$$(b_i, w_i, m_i)_{i=1,2,\cdots,M} \longrightarrow (b_j, d_j, n_j)_{j=1,2,\cdots,N}$$

 $b_j < b_{j+1}$, d_j is number of winning auctions by $b_j - 1$, n_j is number of lost auctions by $b_j - 1$. So

$$w(b_x) = 1 - \prod_{b_j < b_x} \frac{n_j - d_j}{n_j}, \quad p(z) = w(z+1) - w(z).$$

Survival Model

Kan Ren (Shanghai Jiao Tong University)

Introduction to Survival Analysis

Outline

Background

- Probability
- Censored Data
- Challenges

2 Methodology

- Non-parametric Models
 - Kaplan Meier Estimator
 - Survival Tree

Parametric Model

- Cox Hazard Proportional Model
- Deep Survival Analysis

B Evaluation

Cox Hazard Proportional Model

Hazard Rate The rate of the event happening given *not happened* before. Hazard Function The function $\lambda(t|\mathbf{x})$ to predict the hazard rate w.r.t. the covariate input \mathbf{x} .

Hazard Proportional Model The hazard function which models with the proportional relationship with the input covariate, where $\lambda(t|\mathbf{x}) = \lambda_0(t) \exp(h(\mathbf{x})).$

Example

Linear Cox Hazard Model: $h(\mathbf{x}) = \beta \mathbf{x}$. Question: What if $h(\mathbf{x})$ is non-linear?

Discussion

Relationship among hazard rate λ , P.D.F. function p(z), C.D.F. function S(b)

$$\lambda(b) = \lim_{db \to 0} \frac{\Pr(b \le z \le b + db|z > b)}{db}$$

$$= \lim_{db \to 0} \frac{\Pr(b \le z \le b + db)/\Pr(z > b)}{db}$$
(5)
$$= \lim_{db \to 0} \frac{(w_z(b + db) - w_z(b))/S(b)}{db} = \frac{p_z(b)}{S(b)} = -\frac{S'(b)}{S(b)} .$$

$$p_t(t|\mathbf{x}) = \frac{\partial w_t(t|\mathbf{x})}{\partial t} = \frac{-\partial S(t|\mathbf{x})}{\partial t}$$

$$= \frac{\partial \exp(\int_0^t \lambda(v|\mathbf{x})dv)}{\partial t}$$
(6)
$$= \exp\left(\int_0^t \lambda(v|\mathbf{x})dv\right) \lambda(t|\mathbf{x}) .$$

Kan Ren (Shanghai Jiao Tong University)

Introduction to Survival Analysis

Seminar Tutorial at Apex Lab

Cost Function: Partial Likelihood

$$\begin{aligned} \mathsf{Likelihood}_{i} &= \frac{\lambda(t_{i}|\mathbf{x}_{i})}{\sum_{j:t_{j}>t_{i}}\lambda(t_{i}|\mathbf{x}_{j})} \\ &= \frac{\lambda_{0}(t_{i})e^{h(\mathbf{x}_{i})}}{\sum_{j:t_{j}>t_{i}}\lambda_{0}(t_{i})e^{h(\mathbf{x}_{j})}} \\ &= \frac{e^{h(\mathbf{x}_{i})}}{\sum_{j:t_{j}>t_{i}}e^{h(\mathbf{x}_{j})}} \\ \mathcal{L}_{\mathsf{PL}} &= -\log \prod_{i:(\mathbf{x}_{i},t_{i})}\mathsf{Likelihood}_{i} \\ &= -\sum_{i:(\mathbf{x}_{i},t_{i})} \left(h(\mathbf{x}_{i}) - \log \sum_{j:t_{j}>t_{i}}e^{h(\mathbf{x}_{j})}\right) \end{aligned}$$
(8)

3

Parametric Model

.

Base Hazard Function

Example

Weibull Distribution:
$$\lambda_0(t) = rac{k}{\eta} \left(rac{t}{\eta}
ight)^{k-1} \cdot e^{-(t/\eta)^k}$$
.
Question: formulation assumption; without considering **x**

Kan Ren (Shanghai Jiao Tong University)

Deep Survival Analysis

NN-based Cox Model

Using deep neural network to model $h(\mathbf{x})$.^{*a*} ^{*b*} ^{*c*}

^aFaraggi D, Simon R. A neural network model for survival data[J]. Statistics in medicine, 1995.

^bRanganath R, Perotte A, Elhadad N, et al. Deep Survival Analysis[C]//Machine Learning for Healthcare Conference. 2016.

^cLuck M, Sylvain T, Cardinal H, et al. Deep Learning for Patient-Specific Kidney Graft Survival Analysis[J]. arXiv preprint arXiv:1705.10245, 2017.

26 / 32

Kan Ren (Shanghai Jiao Tong University)

Deep Survival Analysis

Generative NN-based Survival Time Estimation^a

^aDeep Multi-task Gaussian Processes for Survival Analysis with Competing Risks, **NIPS 2017**

$$\begin{split} & f_Z \sim \mathcal{GP}(0, \mathbb{K}_{\Theta_Z}), \quad f_T \sim \mathcal{GP}(0, \mathbb{K}_{\Theta_T}) \\ & \mathbb{Z}_i \sim \mathcal{N}(f_Z(\mathbb{X}_i), \sigma_Z^2 \mathbb{I}), \quad \mathbb{T}_i \sim \mathcal{N}(f_T(\mathbb{X}_i), \sigma_T^2 \mathbb{I}) \\ & T_i = \min(T_i^1, \dots, T_i^K) \;. \end{split}$$

(9)

Kan Ren (Shanghai Jiao Tong University)

Introduction to Survival Analysis

Deep Survival Analysis DeepHit (Lee et al. AAAI 2018)

Output (softmax) Layer

DeepHit: A Deep Learning Approach to Survival Analysis with Competing Risks. Lee et al. AAAI 2018

Deep Survival Analysis DeepHit (Lee et al. AAAI 2018)

$$S(b) = P(z \le b | \mathbf{x})$$

= $\sum_{j=0}^{b} P(z = z_j | \mathbf{x})$ (10)

Kan Ren (Shanghai Jiao Tong University)

Introduction to Survival Analysis

< → < → < → < → < → <
 Seminar Tutorial at Apex Lab

- 34

Evaluation

Log-Likelihood

$$\bar{P} = -\frac{1}{N} \sum_{(\boldsymbol{x}_i, z_i) \in D^{\text{test}}} \log p'_z(z_i | \boldsymbol{x}_i) , \qquad (11)$$

where $N = |D^{\text{test}}|$ is the number of the test dataset and $p'_t(t|\mathbf{x})$ is the learned P.D.F.

Kan Ren (Shanghai Jiao Tong University)

Introduction to Survival Analysis

Seminar Tutorial at Apex Lab 30 / 32

→ ∃ →

Evaluation

Relationship between hazard and P.D.F.

$$\lambda(b) = \lim_{db \to 0} \frac{\Pr(b \le z \le b + db|z > b)}{db}$$

$$= \lim_{db \to 0} \frac{\Pr(b \le z \le b + db)/\Pr(z > b)}{db} \qquad (12)$$

$$= \lim_{db \to 0} \frac{(w_z(b + db) - w_z(b))/S(b)}{db} = \frac{p_z(b)}{S(b)} = -\frac{S'(b)}{S(b)} .$$

$$p_t(t|\mathbf{x}) = \frac{\partial w_t(t|\mathbf{x})}{\partial t} = \frac{-\partial S(t|\mathbf{x})}{\partial t}$$

$$= \frac{\partial \exp(\int_0^t \lambda(v|\mathbf{x})dv)}{\partial t} \qquad (13)$$

$$= \exp\left(\int_0^t \lambda(v|\mathbf{x})dv\right) \lambda(t|\mathbf{x}) .$$

Kan Ren (Shanghai Jiao Tong University)

Introduction to Survival Analysis

Seminar Tutorial at Apex Lab

Evaluation

Concordance Index (C-index)

Considering all possible pairs $(T_i, E_i), (T_j, E_j)$ for $i \le j$, the C-index is calculated by considering the number of pairs correctly ordered by the model divided by the total number of admissible pairs. *admissible*: can be ordered in a meaningful way. (uncensored, uncensored); (uncensored, right-censored). admissible pairs.

Kan Ren (Shanghai Jiao Tong University)

Seminar Tutorial at Apex Lab 32 / 32

(二回) (三) (三) (三)